Tavily Search
A search API tailored for LLMs, providing web search, RAG context generation, and Q&A capabilities through the Tavily API.
mcp-tavily-search
⚠️ Notice
This repository is no longer maintained.
The functionality of this tool is now available in mcp-omnisearch, which combines multiple MCP tools in one unified package.
Please use mcp-omnisearch instead.
A Model Context Protocol (MCP) server for integrating Tavily's search API with LLMs. This server provides intelligent web search capabilities optimized for high-quality, factual results, including context generation for RAG applications and direct question answering.
Features
- 🔍 Advanced web search capabilities through Tavily API
- 🤖 AI-generated summaries of search results
- 🎯 Domain filtering for higher quality results
- 📊 Configurable search depth and parameters
- 🧠 Context generation for RAG applications
- ❓ Direct question answering capabilities
- 💾 Response caching with TTL support
- 📝 Multiple response formats (text, JSON, markdown)
- 🔄 Structured result formatting optimized for LLMs
- 🏗️ Built on the Model Context Protocol
Configuration
This server requires configuration through your MCP client. Here are examples for different environments:
Cline Configuration
Add this to your Cline MCP settings:
{
"mcpServers": {
"mcp-tavily-search": {
"command": "npx",
"args": ["-y", "mcp-tavily-search"],
"env": {
"TAVILY_API_KEY": "your-tavily-api-key"
}
}
}
}
Claude Desktop with WSL Configuration
For WSL environments, add this to your Claude Desktop configuration:
{
"mcpServers": {
"mcp-tavily-search": {
"command": "wsl.exe",
"args": [
"bash",
"-c",
"source ~/.nvm/nvm.sh && TAVILY_API_KEY=your-tavily-api-key /home/username/.nvm/versions/node/v20.12.1/bin/npx mcp-tavily-search"
]
}
}
}
Environment Variables
The server requires the following environment variable:
TAVILY_API_KEY
: Your Tavily API key (required)
API
The server implements three MCP tools with configurable parameters:
tavily_search
Search the web using Tavily Search API, optimized for high-quality, factual results.
Parameters:
query
(string, required): Search querysearch_depth
(string, optional): "basic" (faster) or "advanced" (more thorough). Defaults to "basic"topic
(string, optional): "general" or "news". Defaults to "general"days
(number, optional): Number of days back to search (news topic only). Defaults to 3time_range
(string, optional): Time range for results ('day', 'week', 'month', 'year' or 'd', 'w', 'm', 'y')max_results
(number, optional): Maximum number of results. Defaults to 5include_answer
(boolean, optional): Include AI-generated summary. Defaults to trueinclude_images
(boolean, optional): Include related images. Defaults to falseinclude_image_descriptions
(boolean, optional): Include image descriptions. Defaults to falseinclude_raw_content
(boolean, optional): Include raw HTML content. Defaults to falseinclude_domains
(string[], optional): List of trusted domains to includeexclude_domains
(string[], optional): List of domains to excluderesponse_format
(string, optional): 'text', 'json', or 'markdown'. Defaults to 'text'cache_ttl
(number, optional): Cache time-to-live in seconds. Defaults to 3600force_refresh
(boolean, optional): Force fresh results ignoring cache. Defaults to false
tavily_get_search_context
Generate context for RAG applications using Tavily search.
Parameters:
query
(string, required): Search query for context generationmax_tokens
(number, optional): Maximum length of generated context. Defaults to 2000search_depth
(string, optional): "basic" or "advanced". Defaults to "advanced"topic
(string, optional): "general" or "news". Defaults to "general"- Other parameters same as tavily_search
tavily_qna_search
Get direct answers to questions using Tavily search.
Parameters:
query
(string, required): Question to be answeredinclude_sources
(boolean, optional): Include source citations. Defaults to truesearch_depth
(string, optional): "basic" or "advanced". Defaults to "advanced"topic
(string, optional): "general" or "news". Defaults to "general"- Other parameters same as tavily_search
Domain Filtering
The server supports flexible domain filtering through two optional parameters:
include_domains
: Array of trusted domains to include in search resultsexclude_domains
: Array of domains to exclude from search results
This allows you to:
- Target specific trusted sources for academic or technical searches
- Exclude potentially unreliable or irrelevant sources
- Customize sources based on your specific needs
- Access all available sources when no filtering is specified
Example domain filtering:
{
"include_domains": ["arxiv.org", "science.gov"],
"exclude_domains": ["example.com"]
}
Development
Setup
- Clone the repository
- Install dependencies:
pnpm install
- Build the project:
pnpm build
- Run in development mode:
pnpm dev
Publishing
The project uses changesets for version management. To publish:
- Create a changeset:
pnpm changeset
- Version the package:
pnpm changeset version
- Publish to npm:
pnpm release
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
MIT License - see the LICENSE file for details.
Acknowledgments
- Built on the Model Context Protocol
- Powered by Tavily Search API
Related Servers
OrdiscanMCP v1
MCP server for interacting with the Ordiscan API to query Bitcoin ordinals and inscriptions. Requires an Ordiscan API key.
Shodan
Query Shodan's database of internet-connected devices and vulnerabilities using the Shodan API.
Jina AI Search
Perform semantic, image, and cross-modal searches using Jina AI's neural search capabilities.
grep.app Code Search
Search code across millions of public GitHub repositories using the grep.app API.
RAG Documentation
Retrieve and process documentation using vector search to provide context for AI assistants.
Marketaux
Search for market news and financial data by entity, country, industry, or symbol using the Marketaux API.
Baidu Map
A Location-Based Service (LBS) providing geospatial APIs for geocoding, POI search, route planning, and more.
Library Docs MCP Server
Search and fetch documentation for popular libraries like Langchain, Llama-Index, and OpenAI using the Serper API, providing updated information for LLMs.
HeadHunter
An MCP server for the HeadHunter API, focusing on job seeker functionalities.
Unsloth AI Documentation
Search and retrieve content from the Unsloth AI documentation.