Qdrant Retrieve
Semantic search using the Qdrant vector database.
Qdrant Retrieve MCP Server
MCP server for semantic search with Qdrant vector database.
Features
- Semantic search across multiple collections
- Multi-query support
- Configurable result count
- Collection source tracking
Note: The server connects to a Qdrant instance specified by URL.
Note 2: The first retrieve might be slower, as the MCP server downloads the required embedding model.
API
Tools
- qdrant_retrieve
- Retrieves semantically similar documents from multiple Qdrant vector store collections based on multiple queries
- Inputs:
collectionNames(string[]): Names of the Qdrant collections to search acrosstopK(number): Number of top similar documents to retrieve (default: 3)query(string[]): Array of query texts to search for
- Returns:
results: Array of retrieved documents with:query: The query that produced this resultcollectionName: Collection name that this result came fromtext: Document text contentscore: Similarity score between 0 and 1
Usage with Claude Desktop
Add this to your claude_desktop_config.json:
{
"mcpServers": {
"qdrant": {
"command": "npx",
"args": ["-y", "@gergelyszerovay/mcp-server-qdrant-retrive"],
"env": {
"QDRANT_API_KEY": "your_api_key_here"
}
}
}
}
Command Line Options
MCP server for semantic search with Qdrant vector database.
Options
--enableHttpTransport Enable HTTP transport [default: false]
--enableStdioTransport Enable stdio transport [default: true]
--enableRestServer Enable REST API server [default: false]
--mcpHttpPort=<port> Port for MCP HTTP server [default: 3001]
--restHttpPort=<port> Port for REST HTTP server [default: 3002]
--qdrantUrl=<url> URL for Qdrant vector database [default: http://localhost:6333]
--embeddingModelType=<type> Type of embedding model to use [default: Xenova/all-MiniLM-L6-v2]
--help Show this help message
Environment Variables
QDRANT_API_KEY API key for authenticated Qdrant instances (optional)
Examples
$ mcp-qdrant --enableHttpTransport
$ mcp-qdrant --mcpHttpPort=3005 --restHttpPort=3006
$ mcp-qdrant --qdrantUrl=http://qdrant.example.com:6333
$ mcp-qdrant --embeddingModelType=Xenova/all-MiniLM-L6-v2
Related Servers
Tavily Search
A comprehensive search agent powered by the Tavily API for in-depth and reliable search results across various topics.
FetchSERP
All-in-One SEO & Web Intelligence Toolkit API from FetchSERP.
Amazon Product Advertising API
Integrate with the Amazon Product Advertising API to search for products and access product information.
Custom Elasticsearch
A simple MCP server for Elasticsearch, designed for cloud environments where your public key is already authorized.
Package Registry Search
Search and get up-to-date information about NPM, Cargo, PyPi, and NuGet packages.
Gemini Grounding Remote
Fetches user data and event information from the Connpass platform using the Connpass and Gemini APIs.
Tavily MCP Server
Web search using the Tavily API.
Docs MCP Server
Creates a personal, always-current knowledge base for AI by indexing documentation from websites, GitHub, npm, PyPI, and local files.
Pollinations Think
Strategic thinking and real-time web search using the Pollinations AI API with DeepSeek and SearchGPT models.
Tavily Search
A search engine powered by the Tavily AI Search API.