PubMed MCP Server
Search and download scientific articles from PubMed's E-utilities API.
PubMed MCP Server
A Model Context Protocol (MCP) server that provides access to PubMed's E-utilities API for searching and downloading scientific articles. This server enables LLM applications to search PubMed's vast database of biomedical literature and retrieve article metadata, abstracts, and full content.
Features
- Article Search: Search PubMed database with flexible query terms
- Article Download: Retrieve full article metadata, abstracts, and available content
- Batch Operations: Download multiple articles in a single request
- Article Summaries: Get document summaries with metadata
- Multiple Formats: Support for XML, JSON, and text output formats
- Rate Limiting: Automatic rate limiting to respect PubMed API limits
- Error Handling: Robust error handling for API failures
Installation
Quick Setup (Recommended)
- Clone or download this repository
- Run the setup script:
This will create a virtual environment, install dependencies, and provide next steps../setup.sh
Manual Setup
- Clone or download this repository
- Create and activate virtual environment:
python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Configure environment (optional but recommended):
cp .env.example .env # Edit .env file with your NCBI API key and email
Configuration
Environment Variables
Create a .env
file with the following optional configuration:
NCBI_API_KEY
: Your NCBI API key (increases rate limit from 3 to 10 requests/second)NCBI_EMAIL
: Your email address (recommended by NCBI for API usage tracking)
Get your free NCBI API key at: https://www.ncbi.nlm.nih.gov/account/settings/
Usage
Running the Server
-
Activate the virtual environment (if not already active):
source venv/bin/activate # On Windows: venv\Scripts\activate
-
Run the server:
python server.py
The server will start and listen for MCP connections via stdio.
- To deactivate the virtual environment when done:
deactivate
Available Tools
1. search_articles
Search PubMed for articles matching a query.
Parameters:
query
(string, required): Search query (e.g., "COVID-19 vaccines", "machine learning AND healthcare")max_results
(int, optional): Maximum results to return (default: 20, max: 200)sort
(string, optional): Sort order - "relevance", "pub_date", or "first_author" (default: "relevance")
Returns:
pmids
: List of PubMed IDstotal_count
: Total number of matching articlesquery_used
: The search query executedresults_returned
: Number of results returnedsort_order
: Sort order used
Example:
{
"query": "CRISPR gene editing",
"max_results": 10,
"sort": "pub_date"
}
2. download_article
Download article details by PubMed ID.
Parameters:
pmid
(string, required): PubMed ID (e.g., "33073741")format_type
(string, optional): Content format - "abstract", "medline", or "full" (default: "abstract")return_mode
(string, optional): Return format - "xml", "text", or "json" (default: "xml")
Returns:
pmid
: The PubMed IDcontent
: Article content in requested formatformat_type
: Format type usedreturn_mode
: Return mode usedcontent_length
: Length of content
3. download_articles_batch
Download multiple articles in a single request.
Parameters:
pmids
(list, required): List of PubMed IDsformat_type
(string, optional): Content format (default: "abstract")return_mode
(string, optional): Return format (default: "xml")
Returns:
pmids
: List of requested PMIDscontent
: Combined article contentarticle_count
: Number of articles requestedcontent_length
: Length of content
4. get_article_summaries
Get document summaries for articles (metadata without full content).
Parameters:
pmids
(list, required): List of PubMed IDs
Returns:
pmids
: List of requested PMIDssummaries
: XML summary dataarticle_count
: Number of articles requested
Search Query Examples
Basic Searches
"COVID-19"
- Search for COVID-19 articles"machine learning"
- Search for machine learning articles"breast cancer"
- Search for breast cancer articles
Advanced Searches
"COVID-19 AND vaccine"
- Articles about COVID-19 vaccines"machine learning AND healthcare"
- ML in healthcare"CRISPR[Title]"
- CRISPR in article titles only"Nature[Journal]"
- Articles from Nature journal"2023[PDAT]"
- Articles published in 2023"Smith J[Author]"
- Articles by author "Smith J"
Field-Specific Searches
[Title]
- Search in title only[Author]
- Search by author[Journal]
- Search by journal name[PDAT]
- Search by publication date[MeSH]
- Search MeSH terms
Integration with Claude Desktop
Option 1: Using .env file (Recommended)
If you configured your API key in the .env
file during installation:
{
"mcpServers": {
"pubmed": {
"command": "/path/to/pubmed-mcp/venv/bin/python",
"args": ["/path/to/pubmed-mcp/server.py"]
}
}
}
Option 2: Configure in Claude Desktop
Alternatively, you can specify the API key directly in the Claude Desktop configuration:
{
"mcpServers": {
"pubmed": {
"command": "/path/to/pubmed-mcp/venv/bin/python",
"args": ["/path/to/pubmed-mcp/server.py"],
"env": {
"NCBI_API_KEY": "your_api_key_here",
"NCBI_EMAIL": "your_email@example.com"
}
}
}
}
Recommendation: Use Option 1 (.env file) for better security and easier management.
Note: Make sure to use the full path to the Python executable in the virtual environment (venv/bin/python
) to ensure the correct dependencies are available.
Rate Limits
- Without API key: 3 requests per second
- With API key: 10 requests per second
- Batch size limit: 50 articles per batch request
Error Handling
The server provides comprehensive error handling:
- Invalid PMIDs are automatically cleaned (non-numeric characters removed)
- Empty queries return descriptive errors
- API failures are caught and reported
- Rate limiting prevents API abuse
Development
Project Structure
pubmed-mcp/
├── server.py # Main MCP server implementation
├── pubmed_client.py # PubMed API client wrapper
├── requirements.txt # Python dependencies
├── setup.sh # Automated setup script
├── .gitignore # Git ignore file
├── README.md # This file
├── .env.example # Environment variables template
└── venv/ # Virtual environment (created by setup)
Dependencies
mcp[cli]
- MCP Python SDKrequests
- HTTP client for PubMed APIpython-dotenv
- Environment variablestyping-extensions
- Type hints support
License
This project is open source. Please check PubMed's terms of service for API usage guidelines.
Support
For issues with this MCP server, please check:
- Your API key and email configuration
- Network connectivity to NCBI servers
- Rate limiting compliance
- Valid PMID formats
For PubMed API documentation, visit: https://www.ncbi.nlm.nih.gov/books/NBK25500/
Related Servers
PulseMCP Server
Discover and explore MCP servers and integrations using the PulseMCP API.
arXiv MCP Server
Search and analyze academic papers on arXiv.
Travel Planner
A server for travel planning and interacting with Google Maps services.
Ferengi Rules of Acquisition
Provides the Ferengi Rules of Acquisition with powerful search and retrieval capabilities.
Simple Files Vectorstore
Provides semantic search across local files by creating vector embeddings from watched directories.
Typesense MCP Server
An MCP server for interacting with the Typesense search engine.
Academic Paper Search
Search and retrieve academic paper information from multiple sources like Semantic Scholar and CrossRef.
grep.app Code Search
Search code across millions of public GitHub repositories using the grep.app API.
MCP Tavily
Advanced web search and content extraction using the Tavily API.
OrdiscanMCP v1
MCP server for interacting with the Ordiscan API to query Bitcoin ordinals and inscriptions. Requires an Ordiscan API key.