Perplexity MCP Server
Perform real-time internet research with source citations using the Perplexity API.
Perplexity MCP Server
An MCP (Model Context Protocol) server that provides access to Perplexity AI's powerful search capabilities, including web search, academic research, financial data, and advanced filtering options.
Features
The Perplexity MCP server offers six functions for comprehensive search and result management:
Search Functions (4)
Each optimized for different use cases. All functions automatically return source URLs and save results locally if caching is enabled.
-
perplexity_search
: General web search with real-time information. Best for current events, general knowledge, and quick facts. -
perplexity_academic_search
: Automatically filters to academic sources (arxiv.org, pubmed, journals). Best for research papers, scientific studies, and scholarly content. -
perplexity_financial_search
: Optimized for financial domains and recent data. Best for stock analysis, earnings reports, SEC filings, and market trends. -
perplexity_filtered_search
: Advanced search with multiple filtering options. Best when you need specific domain filtering, content types, or location-based results.
Cache Management Functions (2)
Manage previously saved search results for easy reference and reuse.
-
list_previous
: List all previous search queries with unique IDs, sorted by recency. Returns JSON array with query details. -
get_previous_result
: Retrieve a previously cached search result by its unique 10-character ID.
Installation
- Ensure you have Go 1.23 or later installed
- Clone this repository
- Build the server:
./run.sh build
Configuration
The server requires a Perplexity API key and supports various configuration options through environment variables:
Required
PERPLEXITY_API_KEY
: Your Perplexity AI API key
Optional
PERPLEXITY_DEFAULT_MODEL
: Default model to use (default: "sonar")sonar
: Fast, cost-effective search for quick factssonar-pro
: Comprehensive search with better depth and coverage
PERPLEXITY_MAX_TOKENS
: Maximum tokens in response (default: 1024)PERPLEXITY_TEMPERATURE
: Response randomness 0-2 (default: 0.2)PERPLEXITY_TOP_P
: Nucleus sampling parameter (default: 0.9)PERPLEXITY_TOP_K
: Top-k sampling parameter (default: 0)PERPLEXITY_TIMEOUT
: Request timeout duration (default: 30s)PERPLEXITY_RETURN_IMAGES
: Include images by default (default: false)PERPLEXITY_RETURN_RELATED
: Include related questions by default (default: false)PERPLEXITY_RESULTS_ROOT_FOLDER
: Directory to store cached search results (default: empty/disabled)
Usage
MCP Server Mode
Run the server in MCP mode (default):
export PERPLEXITY_API_KEY="your-api-key"
./run.sh run
# or directly: ./perplexity
Terminal Mode (CLI Testing)
Test individual functions directly from the command line:
export PERPLEXITY_API_KEY="your-api-key"
# Test different search types
./run.sh search "latest AI news" sonar-pro
./run.sh academic "quantum computing" sonar-pro
./run.sh financial "AAPL earnings" sonar-pro
./run.sh filtered "renewable energy" sonar-pro
# Cache management
./run.sh list # List previous queries
./run.sh get ABC123XYZ0 # Get cached result by ID
Integration Tests
Run integration tests against the real Perplexity API:
export PERPLEXITY_API_KEY="your-api-key"
./run.sh integration-test
MCP Client Configuration
To use this server with an MCP client, add it to your client configuration:
{
"servers": {
"perplexity": {
"command": "path/to/perplexity",
"env": {
"PERPLEXITY_API_KEY": "your-api-key"
}
}
}
}
Local Result Caching
The server automatically caches search results when PERPLEXITY_RESULTS_ROOT_FOLDER
is configured:
- Storage: Each result is saved in
/unique_id/result.md
with metadata in/unique_id/metadata.yaml
- Unique IDs: 10-character alphanumeric identifiers (e.g.,
A1B2C3D4E5
) - Result ID: When caching is enabled, search responses include
**Result ID:** ABC123XYZ0
- No Reuse: Each search creates a new cached entry, even for identical queries
- LLM Integration: Perfect for LLMs to reference previous searches in conversations
Cache Management Examples
# List previous searches
echo '{"method": "tools/call", "params": {"name": "list_previous", "arguments": {}}}' | ./perplexity
# Get specific result
echo '{"method": "tools/call", "params": {"name": "get_previous_result", "arguments": {"unique_id": "A1B2C3D4E5"}}}' | ./perplexity
Function Reference
perplexity_search
Perform a general web search.
Parameters:
query
(required): The search querymodel
: Choose 'sonar' for quick searches or 'sonar-pro' for comprehensive results (default: sonar)search_domain_filter
: Array of domains to includesearch_exclude_domains
: Array of domains to excludesearch_recency_filter
: Time filter (hour, day, week, month, year)return_images
: Include imagesreturn_related_questions
: Include related questionsmax_tokens
: Maximum response tokenstemperature
: Response randomness (0-2)date_range_start
: Start date (YYYY-MM-DD)date_range_end
: End date (YYYY-MM-DD)location
: Geo-specific search location
Example:
{
"query": "latest AI developments",
"model": "sonar-pro",
"search_recency_filter": "week",
"return_citations": true
}
perplexity_academic_search
Search academic papers and scholarly content.
Parameters:
query
(required): The academic search querysubject_area
: Academic subject (e.g., "Physics", "Computer Science")model
: Defaults to 'sonar-pro' for comprehensive academic resultssearch_domain_filter
: Array of academic domainssearch_recency_filter
: Time filtermax_tokens
: Maximum response tokenstemperature
: Response randomness
Example:
{
"query": "quantum computing applications",
"subject_area": "Physics",
"search_recency_filter": "year"
}
perplexity_financial_search
Search financial data and SEC filings.
Parameters:
query
(required): The financial search queryticker
: Stock ticker symbol (e.g., "AAPL")company_name
: Company namereport_type
: Financial report type (e.g., "10-K", "10-Q", "8-K")model
: Defaults to 'sonar-pro' for comprehensive financial datasearch_recency_filter
: Time filterdate_range_start
: Report start datedate_range_end
: Report end datemax_tokens
: Maximum response tokens
Example:
{
"query": "quarterly earnings",
"ticker": "MSFT",
"report_type": "10-Q",
"search_recency_filter": "month"
}
perplexity_filtered_search
Advanced search with comprehensive filtering.
Parameters:
query
(required): The search querymodel
: Choose based on needs (defaults to sonar-pro)search_domain_filter
: Array of domains to includesearch_exclude_domains
: Array of domains to excludesearch_recency_filter
: Time filtercontent_type
: Type of content (news, academic, blog, etc.)file_type
: File type filter (pdf, doc, html, etc.)language
: Language filtercountry
: Country for geo-specific searchdate_range_start
: Start datedate_range_end
: End datereturn_citations
: Include citationsreturn_images
: Include imagesreturn_related_questions
: Include related questionsmax_tokens
: Maximum response tokenstemperature
: Response randomnesscustom_filters
: Object with additional key-value filters
Example:
{
"query": "renewable energy innovations",
"content_type": "news",
"language": "English",
"country": "Germany",
"search_recency_filter": "month",
"custom_filters": {
"industry": "energy",
"technology": "solar"
}
}
list_previous
List all previous search queries with metadata.
Parameters: None
Response: JSON array with query history, sorted by recency (most recent first).
Example:
[
{
"query": "latest AI developments",
"unique_id": "A1B2C3D4E5",
"datetime": "2025-01-15T10:30:45Z",
"search_type": "general"
},
{
"query": "quantum computing research",
"unique_id": "X9Y8Z7W6V5",
"datetime": "2025-01-15T09:15:30Z",
"search_type": "academic"
}
]
get_previous_result
Retrieve a cached search result by unique ID.
Parameters:
unique_id
(required): The 10-character alphanumeric ID of the cached result
Returns: The complete markdown result from the cached search.
Example:
{
"unique_id": "A1B2C3D4E5"
}
Response Format
All search functions return responses in the following format:
- Main Content: The search results and answer
- Source URLs: A list of source URLs that the LLM can fetch for more details
- Detailed Sources (if available): Title, URL, and snippet for each source
- Related Questions (if requested): Suggested follow-up questions
- Result ID (if caching enabled): Unique 10-character ID for retrieving this result later
Example response structure:
[Main search results content...]
## Source URLs
1. https://example.com/article1
2. https://example.com/article2
3. https://example.com/article3
## Detailed Sources
1. **Article Title**
URL: https://example.com/article1
Snippet: Brief excerpt from the article...
## Related Questions
- What are the latest developments?
- How does this compare to...?
**Result ID:** A1B2C3D4E5
Development
Running Tests
Run unit tests:
./run.sh test
Run integration tests with real API:
./run.sh integration-test
Project Structure
The server follows clean architecture principles with separation of concerns:
perplexity/
├── cmd/
│ └── main.go # Thin entry point with terminal mode (~200 lines)
├── pkg/
│ ├── handler/ # MCP protocol layer
│ │ ├── handler.go # Main MCP handler
│ │ ├── tools.go # Tool definitions
│ │ └── search_handlers.go # Parameter extraction
│ ├── search/ # Core business logic
│ │ ├── types.go # Local search types
│ │ ├── search.go # Strongly-typed search functions
│ │ └── client.go # Perplexity API client
│ ├── cache/ # Result caching system
│ ├── config/ # Configuration management
│ └── types/ # Perplexity API types
├── test/
│ └── test.go # Integration tests
└── README.md
Architecture Benefits
- Thin main.go: Reduced from 360 to 197 lines (45% reduction)
- Terminal mode: Direct CLI testing without MCP protocol overhead
- Separation of concerns: MCP protocol handling separate from business logic
- Strongly-typed: Core functions use proper Go structs instead of
map[string]interface{}
- Local types: Each package owns its types, preventing circular dependencies
- Easy testing: Business logic can be tested independently
Error Handling
The server handles various error conditions:
- Invalid or missing API key (401)
- Rate limiting (429)
- Invalid parameters (400)
- Server errors (500)
Errors are returned with descriptive messages to help diagnose issues.
License
MIT License - see LICENSE file for details.
Related Servers
招投标大数据服务
Provides comprehensive bidding and tender information query services, including statistics, searches, and planned project queries.
MCP Deep Research
Performs deep web searches for information using the Tavily API.
Docs MCP Server
An MCP server that makes documentation and codebases searchable for AI assistants, supporting local directories and Git repositories.
Amazon Product Advertising API
Integrate with the Amazon Product Advertising API to search for products and access product information.
RSS3
Integrates the RSS3 API to query the Open Web.
Search Intent MCP
Analyzes user search keyword intent for SEO support using the AI Search Intent API.
MarineTraffic MCP Server
Provides access to MarineTraffic vessel tracking data.
The Movie Database (TMDB)
Integrates with The Movie Database (TMDB) API, allowing AI assistants to search for movies, retrieve details, and generate related content.
Web Search MCP Server
Free web search using Google search results, no API key required.
Local RAG Backend
A local RAG backend powered by Docker Compose, supporting various document formats for search.