Qdrant MCP Server
Semantic code search using the Qdrant vector database and OpenAI embeddings.
Qdrant MCP Server
A Model Context Protocol (MCP) server that provides semantic code search capabilities using Qdrant vector database and OpenAI embeddings.
Features
- π Semantic Code Search - Find code by meaning, not just keywords
- π Fast Indexing - Efficient incremental indexing of large codebases
- π€ MCP Integration - Works seamlessly with Claude and other MCP clients
- π Background Monitoring - Automatic reindexing of changed files
- π― Smart Filtering - Respects .gitignore and custom patterns
- πΎ Persistent Storage - Embeddings stored in Qdrant for fast retrieval
Installation
Prerequisites
- Node.js 18+
- Python 3.8+
- Docker (for Qdrant) or Qdrant Cloud account
- OpenAI API key
Quick Start
# Install the package
npm install -g @kindash/qdrant-mcp-server
# Or with pip
pip install qdrant-mcp-server
# Set up environment variables
export OPENAI_API_KEY="your-api-key"
export QDRANT_URL="http://localhost:6333" # or your Qdrant Cloud URL
export QDRANT_API_KEY="your-qdrant-api-key" # if using Qdrant Cloud
# Start Qdrant (if using Docker)
docker run -p 6333:6333 qdrant/qdrant
# Index your codebase
qdrant-indexer /path/to/your/code
# Start the MCP server
qdrant-mcp
Configuration
Environment Variables
Create a .env
file in your project root:
# Required
OPENAI_API_KEY=sk-...
# Qdrant Configuration
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY= # Optional, for Qdrant Cloud
QDRANT_COLLECTION_NAME=codebase # Default: codebase
# Indexing Configuration
MAX_FILE_SIZE=1048576 # Maximum file size to index (default: 1MB)
BATCH_SIZE=10 # Number of files to process in parallel
EMBEDDING_MODEL=text-embedding-3-small # OpenAI embedding model
# File Patterns
INCLUDE_PATTERNS=**/*.{js,ts,jsx,tsx,py,java,go,rs,cpp,c,h}
EXCLUDE_PATTERNS=**/node_modules/**,**/.git/**,**/dist/**
MCP Configuration
Add to your Claude Desktop config (~/.claude/config.json
):
{
"mcpServers": {
"qdrant-search": {
"command": "qdrant-mcp",
"args": ["--collection", "my-codebase"],
"env": {
"OPENAI_API_KEY": "sk-...",
"QDRANT_URL": "http://localhost:6333"
}
}
}
}
Usage
Command Line Interface
# Index entire codebase
qdrant-indexer /path/to/code
# Index with custom patterns
qdrant-indexer /path/to/code --include "*.py" --exclude "tests/*"
# Index specific files
qdrant-indexer file1.js file2.py file3.ts
# Start background indexer
qdrant-control start
# Check indexer status
qdrant-control status
# Stop background indexer
qdrant-control stop
In Claude
Once configured, you can use natural language queries:
- "Find all authentication code"
- "Show me files that handle user permissions"
- "What code is similar to the PaymentService class?"
- "Find all API endpoints related to users"
- "Show me error handling patterns in the codebase"
Programmatic Usage
from qdrant_mcp_server import QdrantIndexer, QdrantSearcher
# Initialize indexer
indexer = QdrantIndexer(
openai_api_key="sk-...",
qdrant_url="http://localhost:6333",
collection_name="my-codebase"
)
# Index files
indexer.index_directory("/path/to/code")
# Search
searcher = QdrantSearcher(
qdrant_url="http://localhost:6333",
collection_name="my-codebase"
)
results = searcher.search("authentication logic", limit=10)
for result in results:
print(f"{result.file_path}: {result.score}")
Architecture
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β Claude/MCP ββββββΆβ MCP Server ββββββΆβ Qdrant β
β Client β β (Python) β β Vector DB β
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β β²
βΌ β
ββββββββββββββββββββ β
β OpenAI API β β
β (Embeddings) ββββββββββββββββ
ββββββββββββββββββββ
Advanced Configuration
Custom File Processors
from qdrant_mcp_server import FileProcessor
class MyCustomProcessor(FileProcessor):
def process(self, file_path: str, content: str) -> dict:
# Custom processing logic
return {
"content": processed_content,
"metadata": custom_metadata
}
# Register processor
indexer.register_processor(".myext", MyCustomProcessor())
Embedding Models
Support for multiple embedding providers:
# OpenAI (default)
indexer = QdrantIndexer(embedding_provider="openai")
# Cohere
indexer = QdrantIndexer(
embedding_provider="cohere",
cohere_api_key="..."
)
# Local models (upcoming)
indexer = QdrantIndexer(
embedding_provider="local",
model_path="/path/to/model"
)
Performance Optimization
Batch Processing
# Process files in larger batches (reduces API calls)
qdrant-indexer /path/to/code --batch-size 50
# Limit concurrent requests
qdrant-indexer /path/to/code --max-concurrent 5
Incremental Indexing
# Only index changed files since last run
qdrant-indexer /path/to/code --incremental
# Force reindex of all files
qdrant-indexer /path/to/code --force
Cost Estimation
# Estimate indexing costs before running
qdrant-indexer /path/to/code --dry-run
# Output:
# Files to index: 1,234
# Estimated tokens: 2,456,789
# Estimated cost: $0.43
Monitoring
Web UI (Coming Soon)
# Start monitoring dashboard
qdrant-mcp --web-ui --port 8080
Logs
# View indexer logs
tail -f ~/.qdrant-mcp/logs/indexer.log
# View search queries
tail -f ~/.qdrant-mcp/logs/queries.log
Metrics
- Files indexed
- Tokens processed
- Search queries per minute
- Average response time
- Cache hit rate
Troubleshooting
Common Issues
"Connection refused" error
- Ensure Qdrant is running:
docker ps
- Check QDRANT_URL is correct
- Verify firewall settings
"Rate limit exceeded" error
- Reduce batch size:
--batch-size 5
- Add delay between requests:
--delay 1000
- Use a different OpenAI tier
"Out of memory" error
- Process fewer files at once
- Increase Node.js memory:
NODE_OPTIONS="--max-old-space-size=4096"
- Use streaming mode for large files
Debug Mode
# Enable verbose logging
qdrant-mcp --debug
# Test connectivity
qdrant-mcp --test-connection
# Validate configuration
qdrant-mcp --validate-config
Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
Development Setup
# Clone the repository
git clone https://github.com/kindash/qdrant-mcp-server
cd qdrant-mcp-server
# Install dependencies
npm install
pip install -e .
# Run tests
npm test
pytest
# Run linting
npm run lint
flake8 src/
License
MIT License - see LICENSE for details.
Acknowledgments
- Built for the Model Context Protocol
- Powered by Qdrant vector database
- Embeddings by OpenAI
- Originally developed for KinDash
Support
- π§ Email: support@kindash.app
- π¬ Discord: Join our community
- π Issues: GitHub Issues
- π Docs: Full Documentation
Related Servers
Enhanced Documentation Search
Provides real-time access to documentation, library popularity data, and career insights using the Serper API.
Shodan
Query Shodan's database of internet-connected devices and vulnerabilities using the Shodan API.
StatPearls
Fetches peer-reviewed medical and disease information from StatPearls.
RSS3
Integrates the RSS3 API to query the Open Web.
Stock Analysis
Access real-time and historical Indian stock data using the Yahoo Finance API.
Baidu Map
A Location-Based Service (LBS) providing geospatial APIs for geocoding, POI search, route planning, and more.
QuantConnect PDF MCP Server
Converts QuantConnect PDF documentation into searchable markdown, enabling fast, context-aware search.
OrdiscanMCP v1
MCP server for interacting with the Ordiscan API to query Bitcoin ordinals and inscriptions. Requires an Ordiscan API key.
PubMed MCP Server
Search and download scientific articles from PubMed's E-utilities API.
MCP Jobs
A zero-configuration job aggregation service that fetches job listings from major recruitment websites.