Unified Docs Hub
Creates a massive, searchable knowledge base from numerous curated and auto-discovered GitHub projects.
š Unified Docs Hub - The Ultimate MCP Documentation Server
Transform your AI assistant into a documentation powerhouse! Unified Docs Hub is an MCP (Model Context Protocol) server that creates a massive, searchable knowledge base from 170+ curated repositories and 1000+ auto-discovered GitHub projects.
š Why Unified Docs Hub?
Ever wished your AI assistant had instant access to ALL the documentation it needs? This MCP server solves that by:
- š Massive Knowledge Base: 170+ hand-picked repositories + 1000+ auto-discovered popular projects
- š Lightning-Fast Search: Full-text search across 11,000+ documentation files in milliseconds
- š¤ AI-Optimized: Perfect for Claude, ChatGPT, and other AI assistants using MCP
- š Self-Updating: Automated daily updates and weekly discovery of new repositories
- šÆ Specialized Coverage: Deep expertise in Trading/Finance, AI/ML, DevOps, and 20+ categories
š¬ Real-World Examples
Example 1: Building a Trading Bot
AI: "Show me how to build a crypto trading bot with backtesting"
You: unified_search(query="crypto trading bot backtesting", category="Trading & Finance")
Result: Instant access to documentation from:
- Freqtrade (advanced crypto trading bot)
- Backtrader (backtesting framework)
- CCXT (100+ exchange APIs)
- TA-Lib (200+ technical indicators)
Example 2: Learning Kubernetes
AI: "Explain Kubernetes deployment strategies"
You: unified_search(query="kubernetes deployment strategies", category="Cloud/DevOps")
Result: Documentation from:
- Official Kubernetes docs
- Helm charts best practices
- ArgoCD GitOps workflows
- Istio service mesh patterns
Example 3: Machine Learning Pipeline
AI: "Set up an MLOps pipeline with experiment tracking"
You: unified_search(query="mlops pipeline experiment tracking", category="MLOps")
Result: Comprehensive guides from:
- MLflow (experiment tracking)
- Kubeflow (distributed training)
- DVC (data versioning)
- Weights & Biases (visualization)
š What's Inside?
Knowledge Coverage
Category | Repositories | Highlights |
---|---|---|
Trading & Finance | 64 repos | Algorithmic trading, options, forex, HFT, portfolio optimization |
AI/ML | 20 repos | LLMs, transformers, deep learning, NLP, computer vision |
Cloud/DevOps | 15 repos | Kubernetes, Docker, Terraform, CI/CD, monitoring |
Web Development | 12 repos | React, Vue, Next.js, full-stack frameworks |
MLOps | 6 repos | ML lifecycle, experiment tracking, model deployment |
Data Engineering | 8 repos | Apache Spark, Airflow, dbt, data pipelines |
Observability | 5 repos | Prometheus, Grafana, OpenTelemetry, APM |
Blockchain | 5 repos | Smart contracts, DeFi, Web3 development |
20+ More Categories | ... | Security, databases, mobile, desktop, and more |
Key Features
- š„ Full-Text Search: SQLite FTS5 engine for sub-second searches across millions of lines
- š Quality Scoring: Curated repos ranked by documentation quality (1-10 scale)
- š·ļø Smart Categorization: Browse by technology area or programming language
- š Auto-Discovery: Continuously finds new popular repositories (10k+ stars)
- š¾ Efficient Storage: Deduplication and compression keep the database lean
- š”ļø Rate Limit Handling: Respects GitHub API limits with smart throttling
š Quick Start
Prerequisites
- Python 3.8 or higher
- GitHub Personal Access Token (optional but recommended)
- An MCP-compatible AI assistant (Claude Desktop, Continue.dev, etc.)
Installation
- Clone the repository
git clone https://github.com/yourusername/unified-docs-hub.git
cd unified-docs-hub
- Set up Python environment
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
- Configure your MCP client
For Claude Desktop, add to ~/Library/Application Support/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"unified-docs-hub": {
"command": "/path/to/unified-docs-hub/venv/bin/python",
"args": ["/path/to/unified-docs-hub/unified_docs_hub_server.py"],
"env": {
"GITHUB_TOKEN": "your-github-token-here"
}
}
}
}
- Initial indexing (optional - the server will do this automatically)
# Index all curated repositories
python -c "import asyncio; from unified_docs_hub_server import index_repositories; asyncio.run(index_repositories('smart'))"
š Available MCP Tools
unified_search
Search across all documentation with powerful filters.
# Basic search
unified_search("react hooks tutorial")
# Advanced search with filters
unified_search(
query="transformer architecture attention",
category="AI/ML",
min_stars=5000
)
# Trading-specific search
unified_search(
query="options greeks volatility smile",
category="Trading & Finance"
)
index_repositories
Control repository indexing and discovery.
# Smart mode: Index curated + discover popular (recommended)
index_repositories(mode="smart")
# Update all existing repos
index_repositories(mode="update")
# Discover new trending repos
index_repositories(mode="discover", min_stars=5000, count=50)
list_repositories
Browse indexed repositories.
# List all Trading & Finance repos
list_repositories(category="Trading & Finance")
# Show only curated high-quality repos
list_repositories(source="curated", limit=20)
get_repository_docs
Get all documentation for a specific repository.
# Get all Kubernetes docs
get_repository_docs("kubernetes/kubernetes")
# Get trading library docs
get_repository_docs("freqtrade/freqtrade")
get_statistics
View comprehensive database statistics.
get_statistics()
# Returns: Total repos, documents, categories, languages, API status
š¤ Automated Updates
The server includes automated indexing that keeps your knowledge base fresh:
Setup Automated Updates
# Run the setup script
./setup_automated_indexing.sh
# Or manually start the updater
python automated_index_updater.py --once # Run once
python automated_index_updater.py # Run continuously
Update Schedule
- Daily: Updates all curated repositories (2 AM, 2 PM)
- Weekly: Discovers new trending repositories
- On-Demand: Manual updates via MCP tools
šļø Architecture
Core Components
unified-docs-hub/
āāā unified_docs_hub_server.py # Main MCP server
āāā database.py # SQLite + FTS5 engine
āāā github_client.py # GitHub API integration
āāā response_limiter.py # HTTP/2 error prevention
āāā repositories.yaml # Curated repo list
āāā automated_index_updater.py # Auto-update system
āāā unified_docs.db # Documentation database
How It Works
- Curation: Hand-picked repositories in
repositories.yaml
with quality scores - Discovery: Automatically finds popular repos (10k+ stars) via GitHub API
- Indexing: Downloads and indexes README, docs/, and documentation files
- Storage: SQLite with FTS5 for efficient full-text search
- Serving: FastMCP server provides tools for AI assistants
- Updates: Automated system keeps documentation current
šÆ Use Cases
For AI Developers
- Instant access to ML framework documentation
- Compare different approaches across libraries
- Find code examples and best practices
For Traders & Quants
- Complete algorithmic trading documentation
- Options pricing models and strategies
- Backtesting frameworks and market data APIs
For DevOps Engineers
- Kubernetes patterns and anti-patterns
- CI/CD pipeline examples
- Infrastructure as Code templates
For Full-Stack Developers
- Frontend framework comparisons
- Backend architecture patterns
- Database optimization techniques
š ļø Customization
Adding Custom Repositories
Edit repositories.yaml
:
curated_repositories:
- repo: "owner/awesome-project"
category: "Web Development"
description: "An awesome web framework"
quality_score: 9
priority: high
doc_paths:
- "docs/"
- "README.md"
topics: ["web", "framework", "javascript"]
Creating Custom Categories
Add new categories to group related technologies:
- repo: "quantum-computing/qiskit"
category: "Quantum Computing" # New category!
description: "Quantum computing SDK"
š Expansion Reports
See our journey of building this massive knowledge base:
- EXPANSION_SUMMARY.md - Overview of all expansions
- TRADING_KNOWLEDGE_BASE_COMPLETE.md - Trading & Finance deep dive
- ULTIMATE_TRADING_EXPANSION.md - Final trading expansion details
- FINAL_EXPANSION_REPORT_2025.md - Complete 2025 expansion
š¤ Contributing
We welcome contributions! Please see our Contributing Guide for details.
Ways to Contribute
- Add high-quality repositories to
repositories.yaml
- Improve search algorithms
- Add new MCP tools
- Enhance documentation
- Report bugs or request features
š License
This project is licensed under the MIT License - see the LICENSE file for details.
š Acknowledgments
- Model Context Protocol for enabling AI-assistant integrations
- All the amazing open-source projects indexed in our knowledge base
- The GitHub API for making documentation discovery possible
š¬ Contact
For questions, suggestions, or collaboration opportunities:
- Open an issue on GitHub
- Submit a pull request
- Star the repository to show support!
Built with ā¤ļø for developers who want their AI assistants to know everything!
Related Servers
GPT Researcher
Conducts autonomous, in-depth research by exploring and validating multiple sources to provide relevant and up-to-date information.
ChunkHound
A local-first semantic code search tool with vector and regex capabilities, designed for AI assistants.
Unsplash MCP Server
Search and integrate images from Unsplash using its official API.
äøå©å¤§ę°ę®ęå”
Provides comprehensive patent search and statistical analysis for intelligence analysis, technological innovation, and intellectual property management.
Paper Search MCP
Search and download academic papers from sources like arXiv, PubMed, and Google Scholar.
Higress AI-Search MCP Server
Provides an AI search tool to enhance AI model responses with real-time search results from various search engines using the Higress ai-search feature.
MCP Knowledge Base
A knowledge base server that processes local documents (PDF, DOCX, TXT, HTML) and answers questions based on their content using similarity search.
Mastra Docs Server
Provides AI assistants with direct access to Mastra.ai's complete knowledge base.
NYTimes Article Search
Search for New York Times articles from the last 30 days using a keyword.
ArXiv-MCP
Search and retrieve academic papers from arXiv based on keywords.