Minima
Local RAG (on-premises) with MCP server.
Minima is an open source RAG on-premises containers, with ability to integrate with ChatGPT and MCP. Minima can also be used as a fully local RAG.
Minima currently supports three modes:
-
Isolated installation – Operate fully on-premises with containers, free from external dependencies such as ChatGPT or Claude. All neural networks (LLM, reranker, embedding) run on your cloud or PC, ensuring your data remains secure.
-
Custom GPT – Query your local documents using ChatGPT app or web with custom GPTs. The indexer running on your cloud or local PC, while the primary LLM remains ChatGPT.
-
Anthropic Claude – Use Anthropic Claude app to query your local documents. The indexer operates on your local PC, while Anthropic Claude serves as the primary LLM.
Running as Containers
-
Create a .env file in the project’s root directory (where you’ll find env.sample). Place .env in the same folder and copy all environment variables from env.sample to .env.
-
Ensure your .env file includes the following variables:
-
For fully local installation use: docker compose -f docker-compose-ollama.yml --env-file .env up --build.
-
For ChatGPT enabled installation use: docker compose -f docker-compose-chatgpt.yml --env-file .env up --build.
-
For MCP integration (Anthropic Desktop app usage): docker compose -f docker-compose-mcp.yml --env-file .env up --build.
-
In case of ChatGPT enabled installation copy OTP from terminal where you launched docker and use Minima GPT
-
If you use Anthropic Claude, just add folliwing to /Library/Application\ Support/Claude/claude_desktop_config.json
{
"mcpServers": {
"minima": {
"command": "uv",
"args": [
"--directory",
"/path_to_cloned_minima_project/mcp-server",
"run",
"minima"
]
}
}
}
-
To use fully local installation go to
cd electron
, then runnpm install
andnpm start
which will launch Minima electron app. -
Ask anything, and you'll get answers based on local files in {LOCAL_FILES_PATH} folder.
Variables Explained
LOCAL_FILES_PATH: Specify the root folder for indexing (on your cloud or local pc). Indexing is a recursive process, meaning all documents within subfolders of this root folder will also be indexed. Supported file types: .pdf, .xls, .docx, .txt, .md, .csv.
EMBEDDING_MODEL_ID: Specify the embedding model to use. Currently, only Sentence Transformer models are supported. Testing has been done with sentence-transformers/all-mpnet-base-v2, but other Sentence Transformer models can be used.
EMBEDDING_SIZE: Define the embedding dimension provided by the model, which is needed to configure Qdrant vector storage. Ensure this value matches the actual embedding size of the specified EMBEDDING_MODEL_ID.
OLLAMA_MODEL: Set up the Ollama model, use an ID available on the Ollama site. Please, use LLM model here, not an embedding.
RERANKER_MODEL: Specify the reranker model. Currently, we have tested with BAAI rerankers. You can explore all available rerankers using this link.
USER_ID: Just use your email here, this is needed to authenticate custom GPT to search in your data.
PASSWORD: Put any password here, this is used to create a firebase account for the email specified above.
Examples
Example of .env file for on-premises/local usage:
LOCAL_FILES_PATH=/Users/davidmayboroda/Downloads/PDFs/
EMBEDDING_MODEL_ID=sentence-transformers/all-mpnet-base-v2
EMBEDDING_SIZE=768
OLLAMA_MODEL=qwen2:0.5b # must be LLM model id from Ollama models page
RERANKER_MODEL=BAAI/bge-reranker-base # please, choose any BAAI reranker model
To use a chat ui, please navigate to http://localhost:3000
Example of .env file for Claude app:
LOCAL_FILES_PATH=/Users/davidmayboroda/Downloads/PDFs/
EMBEDDING_MODEL_ID=sentence-transformers/all-mpnet-base-v2
EMBEDDING_SIZE=768
For the Claude app, please apply the changes to the claude_desktop_config.json file as outlined above.
To use MCP with GitHub Copilot:
-
Create a .env file in the project’s root directory (where you’ll find env.sample). Place .env in the same folder and copy all environment variables from env.sample to .env.
-
Ensure your .env file includes the following variables:
- LOCAL_FILES_PATH
- EMBEDDING_MODEL_ID
- EMBEDDING_SIZE
-
Create or update the
.vscode/mcp.json
with the following configuration:
{
"servers": {
"minima": {
"type": "stdio",
"command": "path_to_cloned_minima_project/run_in_copilot.sh",
"args": [
"path_to_cloned_minima_project"
]
}
}
}
Example of .env file for ChatGPT custom GPT usage:
LOCAL_FILES_PATH=/Users/davidmayboroda/Downloads/PDFs/
EMBEDDING_MODEL_ID=sentence-transformers/all-mpnet-base-v2
EMBEDDING_SIZE=768
USER_ID=user@gmail.com # your real email
PASSWORD=password # you can create here password that you want
Also, you can run minima using run.sh.
Installing via Smithery (MCP usage)
To install Minima for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install minima --client claude
For MCP usage, please be sure that your local machines python is >=3.10 and 'uv' installed.
Minima (https://github.com/dmayboroda/minima) is licensed under the Mozilla Public License v2.0 (MPLv2).
Related Servers
Google Web Search (Gemini)
Provides Google Web Search functionality using the Gemini API. Requires a Google API Key or OAuth credentials.
grep.app Code Search
Search code across millions of public GitHub repositories using the grep.app API.
Agentset
RAG MCP for your Agentset data.
Coles and Woolworths MCP Server
Search for products and compare prices at Coles and Woolworths supermarkets in Australia.
Anime MCP Server
An AI-powered server for searching and getting recommendations for anime.
Jina AI MCP Server
Access Jina AI's web services for web page reading, web search, and fact-checking. Requires a Jina AI API key.
招投标大数据服务
Provides comprehensive import and export trade data query functions, including trend analysis, product statistics, and geographic distribution.
MCP Jobs
A zero-configuration job aggregation service that fetches job listings from major recruitment websites.
Academia MCP
Search for scientific publications across ArXiv, ACL Anthology, HuggingFace Datasets, and Semantic Scholar.
Haloscan MCP Server
An MCP server for interacting with the Haloscan SEO API.