MCP Jenkins Intelligence
AI-powered Jenkins pipeline intelligence platform with natural language interface. Provides comprehensive pipeline analysis, failure prediction, optimization suggestions, and automated Jenkinsfile reconstruction using Model Context Protocol (MCP) integration.
MCP Jenkins Intelligence
The Jenkins Intelligence Platform
Transform your Jenkins operations with AI-powered natural language interfaces and comprehensive pipeline analysis.
Quick Start (Binary Distribution)
Prefer a ready-to-use binary? Download the latest release and start using MCP Jenkins Intelligence in seconds!
Download & Install
# Option 1: Use the installer script (recommended)
curl -fsSL https://raw.githubusercontent.com/heniv96/mcp-jenkins-intelligence/main/install.sh | bash
# Option 2: Manual download
# Download from: https://github.com/heniv96/mcp-jenkins-intelligence/releases/latest
# Choose the appropriate binary for your platform:
# - mcp-jenkins-server-macos-arm64 (macOS Apple Silicon)
# - mcp-jenkins-server-linux-amd64 (Linux AMD64)
# Make executable: chmod +x mcp-jenkins-server-<platform>
MCP Configuration
Add to your MCP client configuration (Cursor/VSCode):
{
"mcpServers": {
"mcp-jenkins-intelligence": {
"command": "/path/to/mcp-jenkins-server",
"args": [],
"env": {
"JENKINS_URL": "https://your-jenkins-url",
"JENKINS_USERNAME": "your-username",
"JENKINS_TOKEN": "your-token"
}
}
}
}
That's it! No Python installation, no dependencies - just download and run!
Overview
MCP Jenkins Intelligence is a comprehensive Model Context Protocol (MCP) solution designed for professional DevOps teams. It provides natural language interfaces for complex Jenkins pipeline operations, enabling teams to monitor, analyze, and optimize their CI/CD workflows through AI-powered conversations in VSCode and Cursor.
Key Features
Intelligent Pipeline Analysis
- Real-time Monitoring: Live pipeline status, health metrics, and performance analytics
- AI-Powered Insights: Natural language queries for complex pipeline analysis
- Failure Analysis: Deep dive into pipeline failures with intelligent root cause analysis
- Performance Optimization: Automated suggestions for improving build times and success rates
- Advanced Analytics: Comprehensive reporting and performance comparisons
- Anomaly Detection: AI-powered detection of unusual pipeline behavior patterns
Advanced AI Capabilities
- Natural Language Processing: Conversational interface for complex DevOps operations
- Smart Diagnostics: AI-driven pipeline health analysis and troubleshooting guidance
- Context-Aware Prompts: Intelligent prompt suggestions for different analysis scenarios
- Automated Reporting: Proactive identification of issues and optimization opportunities
Enterprise Security & Compliance
- Multi-Authentication Support: Standard Jenkins and Azure AD integration
- Secure Communication: TLS encryption for all Jenkins API communications
- Audit Logging: Comprehensive audit trails for all pipeline operations
- Minimal Privilege: Secure by design with least privilege access patterns
- Enterprise-Grade Data Protection: 19+ protection patterns for complete data anonymization
- Complete Anonymization: Pipeline names, cluster names, folder names, app names, branch names, organization names, repository names, and code file names are all protected
- Hash-based Security: Sensitive data is replaced with secure hashes before AI communication
- Local Execution: All data processing happens locally - no data leaves your environment
- Recursive Protection: Works on nested data structures and complex objects
- Access Control Auditing: Comprehensive permission and access control analysis
Advanced Analytics & Reporting
- Comprehensive Reports: Generate detailed reports with metrics and insights
- Performance Comparisons: Compare pipeline performance across teams and environments
- Trend Analysis: Long-term performance and reliability trend analysis
Advanced AI Features
- Anomaly Detection: AI-powered detection of unusual pipeline behavior patterns
- Comprehensive Insights: AI-generated insights and recommendations
Performance Optimization
- Build Time Analysis: Detailed analysis and optimization suggestions for build times
Deployment & Distribution
- Multiple Deployment Options: Development setup or production deployment
- Cross-Platform Support: Works on macOS, Linux, and Windows
- Easy Configuration: Simple setup with environment variables or MCP config
Architecture
MCP Protocol Integration
The following diagram shows how MCP Jenkins Intelligence integrates with VSCode and Cursor AI through the Model Context Protocol:
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ VSCode/ │ │ MCP Protocol │ │ Jenkins │
│ Cursor AI │◄──►│ │◄──►│ Intelligence │
│ │ │ │ │ Server │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│
▼
┌─────────────────────────────────────────┐
│ Jenkins API │
└─────────────────────────────────────────┘
│
▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ AI Analysis │ │ Core Tools │ │ MCP Resources │
│ Engine │ │ (30 tools) │ │ & Prompts │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ • Health │ │ • List │ │ • Status │
│ Analysis │ │ • Details │ │ Resource │
│ • Failure │ │ • Builds │ │ • Summary │
│ Analysis │ │ • Configure │ │ Resource │
│ • AI Queries │ │ • Test │ │ • Dashboard │
│ • Metrics │ │ • Questions │ │ Resource │
│ • Dependencies │ │ • Trigger │ │ • Logs │
│ • Trends │ │ • Stop │ │ Resource │
│ • Security │ │ • Enable/Dis │ │ • Health │
│ • Export │ │ • Config │ │ Resource │
│ • Optimize │ │ • Predict │ │ • Analysis │
│ │ │ • Suggest │ │ Prompts │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Modular Architecture
The internal architecture follows a clean, modular design with separation of concerns:
┌─────────────────────────────────────────────────────────────────────────┐
│ MCP Layer │
├─────────────────┬─────────────────┬─────────────────────────────────────┤
│ FastMCP Server │ Tool Registry │ Request Router │
└─────────────────┴─────────────────┴─────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────┐
│ Modular Services │
├─────────────┬─────────────┬─────────────┬─────────────┬─────────────────┤
│ Models │ Services │ Resources │ Prompts │ │
├─────────────┼─────────────┼─────────────┼─────────────┼─────────────────┤
│ • Pipeline │ • Jenkins │ • Status │ • Analysis │ │
│ • Build │ • Core │ • Summary │ • Failure │ │
│ • Health │ • Control │ • Dashboard │ • Optimize │ │
│ • Failure │ • Monitor │ • Logs │ • Security │ │
│ • Query │ • AI │ • Health │ │ │
│ │ • Security │ │ │ │
└─────────────┴─────────────┴─────────────┴─────────────┴─────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────┐
│ Tool Categories │
├─────────────────┬─────────────────┬─────────────────┬─────────────────┤
│ Core Tools (9) │ Control Tools │ Monitoring (4) │ AI Tools (5) │
│ │ (4) │ │ │
├─────────────────┼─────────────────┼─────────────────┼─────────────────┤
│ • list_pipelines│ • trigger_build │ • get_metrics │ • Predict │
│ • get_details │ • stop_build │ • dependencies │ Failure │
│ • get_builds │ • enable_disable│ • monitor_queue │ • Suggest │
│ • ask_questions │ • get_config │ • analyze_trends│ Optimize │
│ • configure_ │ │ │ • Anomaly │
│ jenkins │ │ │ Detection │
│ • test_ │ │ │ • AI │
│ connection │ │ │ Insights │
│ • analyze_ │ │ │ • Retry │
│ health │ │ │ Logic │
│ • analyze_ │ │ │ │
│ failure │ │ │ │
│ • get_server_ │ │ │ │
│ info │ │ │ │
└─────────────────┴─────────────────┴─────────────────┴─────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────┐
│ Additional Tool Categories │
├─────────────┬─────────────┬─────────────┬─────────────────────────────┤
│ Security │ Jenkinsfile │ Analytics │ Performance │
│ (2) │ (3) │ (2) │ (1) │
├─────────────┼─────────────┼─────────────┼─────────────────────────────┤
│ • scan_ │ • get_ │ • generate_ │ • analyze_ │
│ security │ jenkinsfile│ report │ build_time │
│ │ • reconstruct│ • compare_ │ │
│ │ • suggest_ │ performance│ │
│ │ improvements│ │ │
└─────────────┴─────────────┴─────────────┴─────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────┐
│ MCP Resources & Prompts │
├─────────────────────────┬─────────────────────────────────────────────┤
│ Resources (5) │ Prompts (4) │
├─────────────────────────┼─────────────────────────────────────────────┤
│ • pipeline://status │ • analyze_pipeline_prompt │
│ • pipeline://{name}/ │ • failure_analysis_prompt │
│ summary │ • optimization_prompt │
│ • pipeline://dashboard │ • security_audit_prompt │
│ • pipeline://{name}/ │ │
│ logs │ │
│ • pipeline://health │ │
└─────────────────────────┴─────────────────────────────────────────────┘
Directory Structure
mcp-jenkins-intelligence/
├── server.py # Main MCP server (679 lines)
├── models/
│ ├── __init__.py
│ └── pipeline.py # Pydantic models
├── services/
│ ├── __init__.py
│ ├── jenkins_service.py # Jenkins API wrapper
│ ├── core_tools.py # Core pipeline tools
│ ├── monitoring_tools.py # Monitoring & analytics
│ ├── ai_tools.py # AI intelligence tools
│ ├── security_tools.py # Security & compliance
│ ├── advanced_ai_tools.py # Advanced AI features
│ ├── advanced_security_tools.py # Advanced security tools
│ ├── analytics_tools.py # Analytics & reporting
│ ├── performance_tools.py # Performance optimization
│ ├── execution_analysis_service.py # Execution analysis
│ └── jenkinsfile_retrieval_service.py # Jenkinsfile management
├── resources/
│ ├── __init__.py
│ └── pipeline_resources.py # MCP resources
├── prompts/
│ ├── __init__.py
│ └── pipeline_prompts.py # MCP prompts
├── config/
│ └── settings.py # Configuration management
├── utils/
│ ├── __init__.py
│ └── helpers.py # Helper functions
├── manuals/
│ ├── configuration/
│ │ └── README.md # Configuration guide
│ ├── examples/
│ │ └── mcp-config-standalone.json # Example configuration
│ ├── quick-start/
│ │ └── README.md # Quick start guide
│ └── troubleshooting/
│ └── README.md # Troubleshooting guide
├── dist/ # Built binaries (GitHub Releases)
│ ├── mcp-jenkins-server-macos-arm64 # macOS Apple Silicon binary
│ └── mcp-jenkins-server-linux-amd64 # Linux AMD64 binary
├── install.sh # Automated installer script
├── Makefile # Build automation
├── build.sh # Build test script
├── requirements.txt # Python dependencies
├── pyproject.toml # Project configuration
├── LICENSE # MIT License
└── README.md # This file
Installation & Setup
Prerequisites
- Python 3.8+ (for development setup)
- Jenkins Server with API access
- MCP Client (VSCode with MCP extension or Cursor)
Binary Installation (Recommended)
-
Download the binary for your platform:
# macOS (Apple Silicon) curl -L -o mcp-jenkins-server https://github.com/heniv96/mcp-jenkins-intelligence/releases/latest/download/mcp-jenkins-server-macos-arm64 # Linux (AMD64) curl -L -o mcp-jenkins-server https://github.com/heniv96/mcp-jenkins-intelligence/releases/latest/download/mcp-jenkins-server-linux-amd64 -
Make it executable:
chmod +x mcp-jenkins-server -
Configure your MCP client (see MCP Configuration section above)
Development Setup
-
Clone the repository:
git clone https://github.com/heniv96/mcp-jenkins-intelligence.git cd mcp-jenkins-intelligence -
Install dependencies:
pip install -r requirements.txt -
Set environment variables:
export JENKINS_URL="https://your-jenkins-url" export JENKINS_USERNAME="your-username" export JENKINS_TOKEN="your-token" -
Run the server:
python server.py
Configuration
Environment Variables
| Variable | Description | Required | Default |
|---|---|---|---|
JENKINS_URL | Jenkins server URL | Yes | - |
JENKINS_USERNAME | Jenkins username | Yes | - |
JENKINS_TOKEN | Jenkins API token | Yes | - |
MCP_SERVER_PORT | MCP server port | No | 8000 |
MCP Client Configuration
VSCode Configuration
Add to your settings.json:
{
"mcp.servers": {
"mcp-jenkins-intelligence": {
"command": "/path/to/mcp-jenkins-server",
"args": [],
"env": {
"JENKINS_URL": "https://your-jenkins-url",
"JENKINS_USERNAME": "your-username",
"JENKINS_TOKEN": "your-token"
}
}
}
}
Cursor Configuration
Add to your mcp.json:
{
"mcpServers": {
"mcp-jenkins-intelligence": {
"command": "/path/to/mcp-jenkins-server",
"args": [],
"env": {
"JENKINS_URL": "https://your-jenkins-url",
"JENKINS_USERNAME": "your-username",
"JENKINS_TOKEN": "your-token"
}
}
}
}
Usage
Basic Commands
Once configured, you can interact with Jenkins through natural language:
- "List all pipelines" - Get a list of all available pipelines
- "Show me the health of pipeline X" - Get detailed health analysis
- "What's wrong with the failed build?" - Analyze build failures
- "Optimize the build time for pipeline Y" - Get optimization suggestions
- "Generate a report for last week" - Create comprehensive reports
Advanced Features
- AI-Powered Analysis: Ask complex questions about your pipeline performance
- Anomaly Detection: Get alerts about unusual pipeline behavior
- Security Auditing: Comprehensive security analysis of your Jenkins setup
- Performance Optimization: Detailed build time analysis and suggestions
API Reference
Core Tools
| Tool | Description | Parameters |
|---|---|---|
list_pipelines | List all available pipelines | search (optional) |
get_pipeline_details | Get detailed pipeline information | pipeline_name |
get_pipeline_builds | Get recent builds for a pipeline | pipeline_name, limit, status |
analyze_pipeline_health | Analyze pipeline health and performance | pipeline_name, period |
analyze_pipeline_failure | Analyze specific pipeline failure | pipeline_name, build_number |
ask_pipeline_question | Ask natural language questions | question, pipeline_names |
Monitoring Tools
| Tool | Description | Parameters |
|---|---|---|
get_pipeline_metrics | Get detailed pipeline metrics | pipeline_name, period |
get_pipeline_dependencies | Get pipeline dependencies | pipeline_name |
monitor_pipeline_queue | Monitor Jenkins build queue | - |
analyze_build_trends | Analyze build trends across pipelines | pipeline_names, period |
AI Tools
| Tool | Description | Parameters |
|---|---|---|
predict_pipeline_failure | Predict likely pipeline failures | pipeline_name |
suggest_pipeline_optimization | Get optimization suggestions | pipeline_name |
detect_pipeline_anomalies | Detect unusual pipeline behavior | pipeline_name, sensitivity |
generate_ai_insights | Generate comprehensive AI insights | pipeline_name, insight_type |
Security
Data Protection
MCP Jenkins Intelligence implements comprehensive data protection:
- Complete Anonymization: All sensitive data is replaced with secure hashes
- Local Processing: All data processing happens locally
- No External Calls: No data is sent to external AI services
- Recursive Protection: Works on nested data structures
- Access Control Auditing: Comprehensive permission analysis
Supported Protection Patterns
- Pipeline names
- Cluster names
- Folder names
- Application names
- Branch names
- Organization names
- Repository names
- Code file names
- Build numbers
- Timestamps
- URLs and paths
- User information
- Token values
- Configuration data
- Log entries
- Error messages
- Stack traces
- Environment variables
- And more...
Troubleshooting
Common Issues
- Connection Failed: Check your Jenkins URL and credentials
- Permission Denied: Verify your Jenkins user has appropriate permissions
- Binary Not Found: Ensure the binary is executable and in your PATH
- MCP Client Not Responding: Check your MCP configuration
Debug Mode
Enable debug logging by setting:
export DEBUG=1
Getting Help
- Check the troubleshooting guide
- Open an issue
- Review the examples
Contributing
We welcome contributions! Please see our contributing guidelines for details.
Development
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
Building
# Install dependencies
pip install -r requirements.txt
# Run tests
python -m pytest
# Build binary
make build
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- FastMCP - The MCP framework
- Jenkins - The CI/CD platform
- Model Context Protocol - The protocol specification
Changelog
v1.2.0
- Added comprehensive data protection and anonymization
- Improved binary distribution with cross-platform support
- Enhanced security features and access control auditing
- Added advanced AI capabilities and anomaly detection
- Improved performance optimization tools
- Added comprehensive reporting and analytics
v1.1.0
- Initial release with core MCP functionality
- Basic pipeline analysis and monitoring
- AI-powered insights and recommendations
Made with ❤️ for the DevOps community
Related Servers
Authless Remote MCP Server
An authentication-free, remote MCP server designed for deployment on Cloudflare Workers.
Postman MCP Server
Run Postman collections using Newman, with support for environment and global variables.
shadow-cljs
Monitors shadow-cljs builds and provides real-time build status updates.
Grey Hack MCP Server
A Grey Hack server for Cursor IDE, providing GitHub code search, Greybel-JS transpilation, API validation, and script generation.
B12 Website Generator
An AI-powered website generator from B12, requiring no external data files.
Dify Workflow
A tool server for integrating Dify Workflows via the Model Context Protocol (MCP).
Trade-MCP
A modular trading automation project using the Zerodha Kite Connect API for tool-based and resource-based automation.
Rongda MCP Server
An MCP server for Rongda that supports authentication through environment variables.
Hippycampus
Turns any Swagger/OpenAPI REST endpoint with a yaml/json definition into an MCP Server with Langchain/Langflow integration automatically.
MasterMCP
A demonstration tool showcasing potential security attack vectors against the Model Control Protocol (MCP).