MCP LLM Integration Server
An MCP server for integrating local Large Language Models with MCP-compatible clients.
MCP LLM Integration Server
This is a Model Context Protocol (MCP) server that allows you to integrate local LLM capabilities with MCP-compatible clients.
Features
- llm_predict: Process text prompts through a local LLM
- echo: Echo back text for testing purposes
Setup
-
Install dependencies:
source .venv/bin/activate uv pip install mcp
-
Test the server:
python -c " import asyncio from main import server, list_tools, call_tool async def test(): tools = await list_tools() print(f'Available tools: {[t.name for t in tools]}') result = await call_tool('echo', {'text': 'Hello!'}) print(f'Result: {result[0].text}') asyncio.run(test()) "
Integration with LLM Clients
For Claude Desktop
Add this to your Claude Desktop configuration (~/.config/claude-desktop/claude_desktop_config.json
):
{
"mcpServers": {
"llm-integration": {
"command": "/home/tandoori/Desktop/dev/mcp-server/.venv/bin/python",
"args": ["/home/tandoori/Desktop/dev/mcp-server/main.py"]
}
}
}
For Continue.dev
Add this to your Continue configuration (~/.continue/config.json
):
{
"mcpServers": [
{
"name": "llm-integration",
"command": "/home/tandoori/Desktop/dev/mcp-server/.venv/bin/python",
"args": ["/home/tandoori/Desktop/dev/mcp-server/main.py"]
}
]
}
For Cline
Add this to your Cline MCP settings:
{
"llm-integration": {
"command": "/home/tandoori/Desktop/dev/mcp-server/.venv/bin/python",
"args": ["/home/tandoori/Desktop/dev/mcp-server/main.py"]
}
}
Customizing the LLM Integration
To integrate your own local LLM, modify the perform_llm_inference
function in main.py
:
async def perform_llm_inference(prompt: str, max_tokens: int = 100) -> str:
Example: Using transformers
from transformers import pipeline
generator = pipeline('text-generation', model='your-model')
result = generator(prompt, max_length=max_tokens)
return result[0]['generated_text']
Example: Using llama.cpp python bindings
from llama_cpp import Llama
llm = Llama(model_path="path/to/your/model.gguf")
output = llm(prompt, max_tokens=max_tokens)
return output['choices'][0]['text']
Current placeholder implementation
return f"Processed prompt: '{prompt}' (max_tokens: {max_tokens})"
Testing
Run the server directly to test JSON-RPC communication:
source .venv/bin/activate
python main.py
Then send JSON-RPC requests via stdin:
{"jsonrpc": "2.0", "id": 1, "method": "initialize", "params": {"protocolVersion": "2024-11-05", "capabilities": {}, "clientInfo": {"name": "test-client", "version": "1.0.0"}}}
Related Servers
Muster
A universal control plane for managing MCP servers and providing intelligent tool discovery for AI agents.
Typst MCP Server
Provides Typst documentation to MCP clients like Claude Code.
DeepSeek MCP Server
An MCP server for the DeepSeek API, providing code review, file management, and account management.
Argo CD
Interact with Argo CD applications through natural language.
ProjectFlow
A workflow management system for AI-assisted development with MCP support, featuring flexible storage via file system or PostgreSQL.
Merge MCP Server
Integrates the Merge Unified API with any LLM provider using the MCP protocol.
MiniMax MCP
Interact with MiniMax's powerful APIs for text-to-speech, voice cloning, and video/image generation.
MCP Talk Demo Files
A collection of demo files for MCP servers and clients, illustrating various transport protocols and server capabilities using Python.
Configurable Command MCP Server
A flexible MCP server that executes arbitrary command-line tools defined in a configuration file.
TradingCyborg MCP Server
A professional trading server with over 26 tools for Bybit API integration.