Enable AI agents to interact with the Atla API for state-of-the-art LLMJ evaluation.
An MCP server implementation providing a standardized interface for LLMs to interact with the Atla API for state-of-the-art LLMJ evaluation.
Learn more about Atla here. Learn more about the Model Context Protocol here.
evaluate_llm_response
: Evaluate an LLM's response to a prompt using a given evaluation criteria. This function uses an Atla evaluation model under the hood to return a dictionary containing a score for the model's response and a textual critique containing feedback on the model's response.evaluate_llm_response_on_multiple_criteria
: Evaluate an LLM's response to a prompt across multiple evaluation criteria. This function uses an Atla evaluation model under the hood to return a list of dictionaries, each containing an evaluation score and critique for a given criteria.To use the MCP server, you will need an Atla API key. You can find your existing API key here or create a new one here.
We recommend using
uv
to manage the Python environment. See here for installation instructions.
Once you have uv
installed and have your Atla API key, you can manually run the MCP server using uvx
(which is provided by uv
):
ATLA_API_KEY=<your-api-key> uvx atla-mcp-server
Having issues or need help connecting to another client? Feel free to open an issue or contact us!
For more details on using the OpenAI Agents SDK with MCP servers, refer to the official documentation.
pip install openai-agents
import os
from agents import Agent
from agents.mcp import MCPServerStdio
async with MCPServerStdio(
params={
"command": "uvx",
"args": ["atla-mcp-server"],
"env": {"ATLA_API_KEY": os.environ.get("ATLA_API_KEY")}
}
) as atla_mcp_server:
...
For more details on configuring MCP servers in Claude Desktop, refer to the official MCP quickstart guide.
claude_desktop_config.json
file:{
"mcpServers": {
"atla-mcp-server": {
"command": "uvx",
"args": ["atla-mcp-server"],
"env": {
"ATLA_API_KEY": "<your-atla-api-key>"
}
}
}
}
You should now see options from atla-mcp-server
in the list of available MCP tools.
For more details on configuring MCP servers in Cursor, refer to the official documentation.
.cursor/mcp.json
file:{
"mcpServers": {
"atla-mcp-server": {
"command": "uvx",
"args": ["atla-mcp-server"],
"env": {
"ATLA_API_KEY": "<your-atla-api-key>"
}
}
}
}
You should now see atla-mcp-server
in the list of available MCP servers.
Contributions are welcome! Please see the CONTRIBUTING.md file for details.
This project is licensed under the MIT License. See the LICENSE file for details.
Create crafted UI components inspired by the best 21st.dev design engineers.
Connect to any function, any language, across network boundaries using AgentRPC.
ALAPI MCP Tools,Call hundreds of API interfaces via MCP
APIMatic MCP Server is used to validate OpenAPI specifications using APIMatic. The server processes OpenAPI files and returns validation summaries by leveraging APIMatic’s API.
Get prescriptive CDK advice, explain CDK Nag rules, check suppressions, generate Bedrock Agent schemas, and discover AWS Solutions Constructs patterns.
Bring the full power of BrowserStack’s Test Platform to your AI tools, making testing faster and easier for every developer and tester on your team.
Flag features, manage company data, and control feature access using Bucket.
Manage Buildkite pipelines and builds.
A Model Context Protocol server for generating visual charts using AntV.
Enable AI Agents to fix build failures from CircleCI.