Jupyter Earth MCP Server
Provides tools for geospatial analysis within Jupyter notebooks.
This repository is archived - Use https://github.com/datalayer/earthdata-mcp-server instead.
π β¨ Jupyter Earth MCP Server
π Jupyter Earth MCP Server is a Model Context Protocol (MCP) server implementation that provides a set of tools for πΊοΈ Geospatial analysis in π Jupyter notebooks.
The following demo uses the Earthdata MCP server to search for datasets and data granules on NASA Earthdata, this MCP server to download the data in Jupyter and the jupyter-mcp-server to run further analysis.
Start JupyterLab
Make sure you have the following installed. The collaboration package is needed as the modifications made on the notebook can be seen thanks to Jupyter Real Time Collaboration.
pip install jupyterlab==4.4.1 jupyter-collaboration==4.0.2 ipykernel
pip uninstall -y pycrdt datalayer_pycrdt
pip install datalayer_pycrdt==0.12.17
Then, start JupyterLab with the following command.
jupyter lab --port 8888 --IdentityProvider.token MY_TOKEN --ip 0.0.0.0
You can also run make jupyterlab.
[!NOTE]
The
--ipis set to0.0.0.0to allow the MCP server running in a Docker container to access your local JupyterLab.
Use with Claude Desktop
Claude Desktop can be downloaded from this page for macOS and Windows.
For Linux, we had success using this UNOFFICIAL build script based on nix
# β οΈ UNOFFICIAL
# You can also run `make claude-linux`
NIXPKGS_ALLOW_UNFREE=1 nix run github:k3d3/claude-desktop-linux-flake \
--impure \
--extra-experimental-features flakes \
--extra-experimental-features nix-command
To use this with Claude Desktop, add the following to your claude_desktop_config.json (read more on the MCP documentation website).
[!IMPORTANT]
Ensure the port of the
SERVER_URLandTOKENmatch those used in thejupyter labcommand.The
NOTEBOOK_PATHshould be relative to the directory where JupyterLab was started.
Claude Configuration on macOS and Windows
{
"mcpServers": {
"jupyter-earth": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"SERVER_URL",
"-e",
"TOKEN",
"-e",
"NOTEBOOK_PATH",
"datalayer/jupyter-earth-mcp-server:latest"
],
"env": {
"SERVER_URL": "http://host.docker.internal:8888",
"TOKEN": "MY_TOKEN",
"NOTEBOOK_PATH": "notebook.ipynb"
}
}
}
}
Claude Configuration on Linux
CLAUDE_CONFIG=${HOME}/.config/Claude/claude_desktop_config.json
cat <<EOF > $CLAUDE_CONFIG
{
"mcpServers": {
"jupyter-earth": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"SERVER_URL",
"-e",
"TOKEN",
"-e",
"NOTEBOOK_PATH",
"--network=host",
"datalayer/jupyter-earth-mcp-server:latest"
],
"env": {
"SERVER_URL": "http://localhost:8888",
"TOKEN": "MY_TOKEN",
"NOTEBOOK_PATH": "notebook.ipynb"
}
}
}
}
EOF
cat $CLAUDE_CONFIG
Components
Tools
The server currently offers 1 tool:
download_earth_data_granules
- Add a code cell in a Jupyter notebook to download Earth data granules from NASA Earth Data.
- Input:
folder_name(string): Local folder name to save the data.short_name(string): Short name of the Earth dataset to download.count(int): Number of data granules to download.temporal(tuple): (Optional) Temporal range in the format (date_from, date_to).bounding_box(tuple): (Optional) Bounding box in the format (lower_left_lon, lower_left_lat, upper_right_lon, upper_right_lat).
- Returns: Cell output.
Prompts
download_analyze_global_sea_level- To ask for downloading and analyzing global sea level data in Jupyter.
- Returns: Prompt correctly formatted.
Building
You can build the Docker image it from source.
make build-docker
Related Servers
Mermaid
Generate mermaid diagram and chart with AI MCP dynamically.
GraphQL MCP
Interact with GraphQL APIs using LLMs. Supports schema introspection and query execution.
Logfire
Provides access to OpenTelemetry traces and metrics through Logfire.
ReAPI OpenAPI
Serves multiple OpenAPI specifications to enable LLM-powered IDE integrations.
System Diagnostics
An MCP server for system diagnostics and monitoring on Ubuntu using common command-line tools.
RubyGems Package Info
Fetches comprehensive information about Ruby gems from RubyGems.org, including READMEs, metadata, and search functionality.
Bevy BRP MCP
Control, inspect, and mutate Bevy applications with AI coding assistants via the Bevy Remote Protocol (BRP).
PCM
A server for reverse engineering tasks using the pcm toolkit. Requires a local clone of the pcm repository.
Allyson
AI-powered SVG animation generator that transforms static files into animated SVG components using the Allyson platform
Docfork
Provides up-to-date documentation for over 9000 libraries directly within AI code editors.