AWS Nova Canvas
Generate images using Amazon Nova Canvas with text prompts and color guidance.
Amazon Nova Canvas MCP Server
MCP server for generating images using Amazon Nova Canvas
Features
Text-based image generation
- Create images from text prompts with
generate_image - Customizable dimensions (320-4096px), quality options, and negative prompting
- Supports multiple image generation (1-5) in single request
- Adjustable parameters like cfg_scale (1.1-10.0) and seeded generation
Color-guided image generation
- Generate images with specific color palettes using
generate_image_with_colors - Define up to 10 hex color values to influence the image style and mood
- Same customization options as text-based generation
Workspace integration
- Images saved to user-specified workspace directories with automatic folder creation
AWS authentication
- Uses AWS profiles for secure access to Amazon Nova Canvas services
Prerequisites
- Install
uvfrom Astral or the GitHub README - Install Python using
uv python install 3.10 - Set up AWS credentials with access to Amazon Bedrock and Nova Canvas
- You need an AWS account with Amazon Bedrock and Amazon Nova Canvas enabled
- Configure AWS credentials with
aws configureor environment variables - Ensure your IAM role/user has permissions to use Amazon Bedrock and Nova Canvas
Installation
| Cursor | VS Code |
|---|---|
Configure the MCP server in your MCP client configuration (e.g., for Amazon Q Developer CLI, edit ~/.aws/amazonq/mcp.json):
{
"mcpServers": {
"awslabs.nova-canvas-mcp-server": {
"command": "uvx",
"args": ["awslabs.nova-canvas-mcp-server@latest"],
"env": {
"AWS_PROFILE": "your-aws-profile",
"AWS_REGION": "us-east-1",
"FASTMCP_LOG_LEVEL": "ERROR"
},
"disabled": false,
"autoApprove": []
}
}
}
Windows Installation
For Windows users, the MCP server configuration format is slightly different:
{
"mcpServers": {
"awslabs.nova-canvas-mcp-server": {
"disabled": false,
"timeout": 60,
"type": "stdio",
"command": "uv",
"args": [
"tool",
"run",
"--from",
"awslabs.nova-canvas-mcp-server@latest",
"awslabs.nova-canvas-mcp-server.exe"
],
"env": {
"FASTMCP_LOG_LEVEL": "ERROR",
"AWS_PROFILE": "your-aws-profile",
"AWS_REGION": "us-east-1"
}
}
}
}
or docker after a successful docker build -t awslabs/nova-canvas-mcp-server .:
# fictitious `.env` file with AWS temporary credentials
AWS_ACCESS_KEY_ID=ASIAIOSFODNN7EXAMPLE
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
AWS_SESSION_TOKEN=AQoEXAMPLEH4aoAH0gNCAPy...truncated...zrkuWJOgQs8IZZaIv2BXIa2R4Olgk
{
"mcpServers": {
"awslabs.nova-canvas-mcp-server": {
"command": "docker",
"args": [
"run",
"--rm",
"--interactive",
"--env",
"AWS_REGION=us-east-1",
"--env",
"FASTMCP_LOG_LEVEL=ERROR",
"--env-file",
"/full/path/to/file/above/.env",
"awslabs/nova-canvas-mcp-server:latest"
],
"env": {},
"disabled": false,
"autoApprove": []
}
}
}
NOTE: Your credentials will need to be kept refreshed from your host
Installing via Smithery
To install Amazon Nova Canvas MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @awslabs/nova-canvas-mcp-server --client claude
AWS Authentication
The MCP server uses the AWS profile specified in the AWS_PROFILE environment variable. If not provided, it defaults to the "default" profile in your AWS configuration file.
"env": {
"AWS_PROFILE": "your-aws-profile",
"AWS_REGION": "us-east-1"
}
Make sure the AWS profile has permissions to access Amazon Bedrock and Amazon Nova Canvas. The MCP server creates a boto3 session using the specified profile to authenticate with AWS services. Your AWS IAM credentials remain on your local machine and are strictly used for using the Amazon Bedrock model APIs.
Related Servers
Photoshop MCP Server
An MCP server for integrating with and automating Adobe Photoshop using the photoshop-python-api.
Vercel Domains MCP
Query domains on Vercel
Chrome DevTools MCP
chrome-devtools-mcp lets your coding agent (such as Gemini, Claude, Cursor or Copilot) control and inspect a live Chrome browser
MCP Jenkins
Enables secure, contextual AI interactions with Jenkins tools via the Model Context Protocol.
MCP Image Extractor
Extracts images from files, URLs, or base64 strings and converts them to base64 for LLM analysis.
Docker
Run and manage docker containers, docker compose, and logs
DeepView MCP
Enables IDEs like Cursor and Windsurf to analyze large codebases using Gemini's 1M context window.
Supervisord MCP
A tool for managing Supervisord processes, integrated with AI agents via the Model Context Protocol (MCP). It offers standardized process control, real-time monitoring, and robust operations.
Unity Editor MCP
Enables AI assistants to interact directly with the Unity Editor for AI-assisted game development and automation.
BrowserStack
Bring the full power of BrowserStack’s Test Platform to your AI tools, making testing faster and easier for every developer and tester on your team.