Jina AI Search
Perform semantic, image, and cross-modal searches using Jina AI's neural search capabilities.
Jina AI MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Jina AI's neural search capabilities. This server enables semantic search, image search, and cross-modal search functionalities through a simple interface.
🚀 Features
- Semantic Search: Find semantically similar documents using natural language queries
- Image Search: Search for visually similar images using image URLs
- Cross-Modal Search: Perform text-to-image or image-to-text searches
📋 Prerequisites
- Node.js 16 or higher
- A Jina AI account and API key (Get one here)
- MCP-compatible environment (e.g., Cline)
🛠️ Installation
- Clone the repository:
git clone <repository-url>
cd jina-ai-mcp
- Install dependencies:
npm install
- Create a
.env
file with your Jina AI API key:
JINA_API_KEY=your_api_key_here
- Build the server:
npm run build
⚙️ Configuration
Add the following configuration to your MCP settings file:
{
"mcpServers": {
"jina-ai": {
"command": "node",
"args": [
"/path/to/jina-ai-mcp/build/index.js"
],
"env": {
"JINA_API_KEY": "your_api_key_here"
}
}
}
}
🔍 Available Tools
1. Semantic Search
Perform semantic/neural search on text documents.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "semantic_search",
arguments: {
query: "search query text",
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
2. Image Search
Search for similar images using an image URL.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "image_search",
arguments: {
imageUrl: "https://example.com/image.jpg",
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
3. Cross-Modal Search
Perform text-to-image or image-to-text search.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "cross_modal_search",
arguments: {
query: "a beautiful sunset", // or image URL for image2text
mode: "text2image", // or "image2text"
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
📝 Response Format
All search tools return results in the following format:
{
content: [
{
type: "text",
text: JSON.stringify({
results: [
{
id: string,
score: number,
data: Record<string, any>
}
]
}, null, 2)
}
]
}
🔐 Error Handling
The server handles various error cases:
- Invalid API key
- Missing or invalid parameters
- API rate limits
- Network errors
- Invalid collection names
All errors are properly formatted and returned with appropriate error codes and messages.
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Jina AI for their excellent neural search platform
- Model Context Protocol for the MCP specification
Related Servers
Mapbox
Unlock geospatial intelligence through Mapbox APIs like geocoding, POI search, directions, isochrones and more.
Console MCP Server
Bridge external console processes with Copilot by searching through JSON log files.
NYTimes Article Search
Search for New York Times articles from the last 30 days using a keyword.
Google Search
Perform Google searches and view web content with advanced bot detection avoidance.
Data Gouv MCP Server
Interact with the French government's open data platform (data.gouv.fr) to search for company information.
Semiconductor Supply Chain MCP Server
Access semiconductor B2B platforms like AnySilicon and DesignReuse for IP core and ASIC service procurement.
MCP Jobs
A zero-configuration job aggregation service that fetches job listings from major recruitment websites.
Local RAG Backend
A local RAG backend powered by Docker Compose, supporting various document formats for search.
Solodit Search
Search and retrieve Solodit vulnerability reports.
Kagi
Kagi search API integration