Jina AI Search
Perform semantic, image, and cross-modal searches using Jina AI's neural search capabilities.
Jina AI MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Jina AI's neural search capabilities. This server enables semantic search, image search, and cross-modal search functionalities through a simple interface.
🚀 Features
- Semantic Search: Find semantically similar documents using natural language queries
- Image Search: Search for visually similar images using image URLs
- Cross-Modal Search: Perform text-to-image or image-to-text searches
📋 Prerequisites
- Node.js 16 or higher
- A Jina AI account and API key (Get one here)
- MCP-compatible environment (e.g., Cline)
🛠️ Installation
- Clone the repository:
git clone <repository-url>
cd jina-ai-mcp
- Install dependencies:
npm install
- Create a
.envfile with your Jina AI API key:
JINA_API_KEY=your_api_key_here
- Build the server:
npm run build
⚙️ Configuration
Add the following configuration to your MCP settings file:
{
"mcpServers": {
"jina-ai": {
"command": "node",
"args": [
"/path/to/jina-ai-mcp/build/index.js"
],
"env": {
"JINA_API_KEY": "your_api_key_here"
}
}
}
}
🔍 Available Tools
1. Semantic Search
Perform semantic/neural search on text documents.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "semantic_search",
arguments: {
query: "search query text",
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
2. Image Search
Search for similar images using an image URL.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "image_search",
arguments: {
imageUrl: "https://example.com/image.jpg",
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
3. Cross-Modal Search
Perform text-to-image or image-to-text search.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "cross_modal_search",
arguments: {
query: "a beautiful sunset", // or image URL for image2text
mode: "text2image", // or "image2text"
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
📝 Response Format
All search tools return results in the following format:
{
content: [
{
type: "text",
text: JSON.stringify({
results: [
{
id: string,
score: number,
data: Record<string, any>
}
]
}, null, 2)
}
]
}
🔐 Error Handling
The server handles various error cases:
- Invalid API key
- Missing or invalid parameters
- API rate limits
- Network errors
- Invalid collection names
All errors are properly formatted and returned with appropriate error codes and messages.
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Jina AI for their excellent neural search platform
- Model Context Protocol for the MCP specification
Related Servers
Untappd
Query the Untappd API for beer and brewery information.
Lancelot-MCP
A containerized MCP server for LanceDB vector search, featuring hybrid processing with Gemini and Ollama.
Wolfram Alpha
Access Wolfram Alpha's computational knowledge engine for expert-level answers and data analysis.
Bing Webmaster Tools
Access Bing Webmaster Tools data, including search performance, crawl statistics, URL submission, and keyword research.
Unsplash MCP Server
Search and integrate images from Unsplash using its official API.
Langflow Document Q&A Server
A document question-and-answer server powered by Langflow.
Cezzis Cocktails
Search for cocktail recipes using the cezzis.com API.
Scholarly
Search for academic articles from scholarly vendors.
IP2Location.io
IP2Location.io API integration to retrieve the geolocation information for an IP address.
Volcengine Knowledge Base MCP
Provides knowledge base search and dialogue completion using the Volcengine Knowledge Base service. Requires external credential configuration.