A server for RAG-based document search and management using Qdrant vector database with Ollama or OpenAI embeddings.
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Add a document to the RAG system.
Parameters:
url
(required): Document URL/identifiercontent
(required): Document contentmetadata
(optional): Document metadata
title
: Document titlecontentType
: Content type (e.g., "text/markdown")Search through stored documents using semantic similarity.
Parameters:
query
(required): Natural language search queryoptions
(optional):
limit
: Maximum number of results (1-20, default: 5)scoreThreshold
: Minimum similarity score (0-1, default: 0.7)filters
:
domain
: Filter by domainhasCode
: Filter for documents containing codeafter
: Filter for documents after date (ISO format)before
: Filter for documents before date (ISO format)List all stored documents with pagination and grouping options.
Parameters (all optional):
page
: Page number (default: 1)pageSize
: Number of documents per page (1-100, default: 20)groupByDomain
: Group documents by domain (default: false)sortBy
: Sort field ("timestamp", "title", or "domain")sortOrder
: Sort order ("asc" or "desc")Delete a document from the RAG system.
Parameters:
url
(required): URL of the document to deletenpm install -g @mcpservers/ragdocs
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
QDRANT_URL
: URL of your Qdrant instance
QDRANT_API_KEY
: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER
: Choice of embedding provider ("ollama" or "openai", default: "ollama")OPENAI_API_KEY
: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL
: Model to use for embeddings
Apache License 2.0
An MCP server that connects to Perplexity's Sonar API, enabling real-time web-wide research in conversational AI.
Search YouTube videos and retrieve their transcripts using the YouTube API.
Fetches and processes arXiv papers using LaTeX source for accurate equation handling.
Provides comprehensive import and export trade data query functions, including trend analysis, product statistics, and geographic distribution.
Convert city names and locations into latitude and longitude coordinates using the free OpenStreetMap Nominatim API. No API key is required.
An MCP server for accessing Ragie's knowledge base retrieval capabilities.
An MCP agent that integrates various search tools using the SearchAPI service. Requires SearchAPI and Google API keys.
MCP server for interacting with the Ordiscan API to query Bitcoin ordinals and inscriptions. Requires an Ordiscan API key.
Query records of Korean independence activists from the Ministry of Patriots and Veterans Affairs.
Access earthquake data from the USGS Quakes API using natural language queries.