RagDocs
A server for RAG-based document search and management using Qdrant vector database with Ollama or OpenAI embeddings.
RagDocs MCP Server
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Features
- Add documentation with metadata
- Semantic search through documents
- List and organize documentation
- Delete documents
- Support for both Ollama (free) and OpenAI (paid) embeddings
- Automatic text chunking and embedding generation
- Vector storage with Qdrant
Prerequisites
- Node.js 16 or higher
- One of the following Qdrant setups:
- Local instance using Docker (free)
- Qdrant Cloud account with API key (managed service)
- One of the following for embeddings:
- Ollama running locally (default, free)
- OpenAI API key (optional, paid)
Available Tools
1. add_document
Add a document to the RAG system.
Parameters:
url
(required): Document URL/identifiercontent
(required): Document contentmetadata
(optional): Document metadatatitle
: Document titlecontentType
: Content type (e.g., "text/markdown")
2. search_documents
Search through stored documents using semantic similarity.
Parameters:
query
(required): Natural language search queryoptions
(optional):limit
: Maximum number of results (1-20, default: 5)scoreThreshold
: Minimum similarity score (0-1, default: 0.7)filters
:domain
: Filter by domainhasCode
: Filter for documents containing codeafter
: Filter for documents after date (ISO format)before
: Filter for documents before date (ISO format)
3. list_documents
List all stored documents with pagination and grouping options.
Parameters (all optional):
page
: Page number (default: 1)pageSize
: Number of documents per page (1-100, default: 20)groupByDomain
: Group documents by domain (default: false)sortBy
: Sort field ("timestamp", "title", or "domain")sortOrder
: Sort order ("asc" or "desc")
4. delete_document
Delete a document from the RAG system.
Parameters:
url
(required): URL of the document to delete
Installation
npm install -g @mcpservers/ragdocs
MCP Server Configuration
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
Local Qdrant with Docker
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
Environment Variables
QDRANT_URL
: URL of your Qdrant instance- For local: "http://127.0.0.1:6333" (default)
- For cloud: "https://your-cluster-url.qdrant.tech"
QDRANT_API_KEY
: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER
: Choice of embedding provider ("ollama" or "openai", default: "ollama")OPENAI_API_KEY
: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL
: Model to use for embeddings- For Ollama: defaults to "nomic-embed-text"
- For OpenAI: defaults to "text-embedding-3-small"
License
Apache License 2.0
Related Servers
Search Stock News
Search for stock news using the Tavily API.
Spryker Search Tool
Search Spryker packages, documentation, and code within Spryker GitHub repositories using natural language.
Google Research
Perform advanced web research using Google Search, with intelligent content extraction and multi-source synthesis.
Tavily
Search engine for AI agents (search + extract) powered by Tavily
Local Research MCP Server
A private, local research assistant that searches the web and scrapes content using DuckDuckGo.
Brave-Gemini Research MCP Server
Perform web searches with the Brave Search API and analyze research papers using Google's Gemini model.
Semantic Scholar
Access Semantic Scholar's academic paper database through their API.
招投标大数据服务
Provides comprehensive import and export trade data query functions, including trend analysis, product statistics, and geographic distribution.
Vectorize
Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.
Exa
Search Engine made for AIs by Exa