RagDocs
A server for RAG-based document search and management using Qdrant vector database with Ollama or OpenAI embeddings.
RagDocs MCP Server
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Features
- Add documentation with metadata
- Semantic search through documents
- List and organize documentation
- Delete documents
- Support for both Ollama (free) and OpenAI (paid) embeddings
- Automatic text chunking and embedding generation
- Vector storage with Qdrant
Prerequisites
- Node.js 16 or higher
- One of the following Qdrant setups:
- Local instance using Docker (free)
- Qdrant Cloud account with API key (managed service)
- One of the following for embeddings:
- Ollama running locally (default, free)
- OpenAI API key (optional, paid)
Available Tools
1. add_document
Add a document to the RAG system.
Parameters:
url(required): Document URL/identifiercontent(required): Document contentmetadata(optional): Document metadatatitle: Document titlecontentType: Content type (e.g., "text/markdown")
2. search_documents
Search through stored documents using semantic similarity.
Parameters:
query(required): Natural language search queryoptions(optional):limit: Maximum number of results (1-20, default: 5)scoreThreshold: Minimum similarity score (0-1, default: 0.7)filters:domain: Filter by domainhasCode: Filter for documents containing codeafter: Filter for documents after date (ISO format)before: Filter for documents before date (ISO format)
3. list_documents
List all stored documents with pagination and grouping options.
Parameters (all optional):
page: Page number (default: 1)pageSize: Number of documents per page (1-100, default: 20)groupByDomain: Group documents by domain (default: false)sortBy: Sort field ("timestamp", "title", or "domain")sortOrder: Sort order ("asc" or "desc")
4. delete_document
Delete a document from the RAG system.
Parameters:
url(required): URL of the document to delete
Installation
npm install -g @mcpservers/ragdocs
MCP Server Configuration
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
Local Qdrant with Docker
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
Environment Variables
QDRANT_URL: URL of your Qdrant instance- For local: "http://127.0.0.1:6333" (default)
- For cloud: "https://your-cluster-url.qdrant.tech"
QDRANT_API_KEY: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER: Choice of embedding provider ("ollama" or "openai", default: "ollama")OPENAI_API_KEY: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL: Model to use for embeddings- For Ollama: defaults to "nomic-embed-text"
- For OpenAI: defaults to "text-embedding-3-small"
License
Apache License 2.0
Related Servers
Brave Search
An MCP server for the Brave Search API, providing both web and local search capabilities.
OSRS MCP Server
Search the Old School RuneScape (OSRS) Wiki and access game data definitions.
Bus Nearby MCP
Provides access to the Israeli transport API for geocoding and transit directions.
Context7 HTTP
An MCP server for the Context7 project, providing HTTP streaming and search endpoints for library information without local installation.
Langgraph Deep Search MCP Server
A deep search server powered by LangGraph and the Google Gemini API.
RedNote MCP
Search and retrieve content from the Xiaohongshu (Red Book) platform.
Serper Search and Scrape
Web search and webpage scraping using the Serper API.
Library Docs MCP Server
Search and fetch documentation for popular libraries like Langchain, Llama-Index, and OpenAI using the Serper API.
Perplexity MCP Server
Web search using Perplexity's API.
PubMed MCP Server
A server for searching, retrieving, and analyzing articles from the PubMed database.