Integrates with The Movie Database (TMDB) API, allowing AI assistants to search for movies, retrieve details, and generate related content.
This project implements a Model Context Protocol (MCP) server that integrates with The Movie Database (TMDB) API. It enables AI assistants like Claude to interact with movie data, providing capabilities for searching, retrieving details, and generating content related to movies.
Static Resources:
tmdb://info
- Information about TMDB APItmdb://trending
- Currently trending moviesResource Templates:
tmdb://movie/{id}
- Detailed information about a specific movieClone this repository
git clone https://github.com/your-username/tmdb-mcp.git
cd tmdb-mcp
Install dependencies
npm install
Configure your TMDB API key
.env
file in the project root (alternative: edit src/config.ts
directly)TMDB_API_KEY=your_api_key_here
Build the project
npm run build
Start the server
npm start
{
"mcpServers": {
"tmdb-mcp": {
"command": "node",
"args": ["/absolute/path/to/your/tmdb-mcp/build/index.js"]
}
}
}
tmdb-mcp/
├── src/
│ ├── index.ts # Main server file
│ ├── config.ts # Configuration and API keys
│ ├── handlers.ts # Request handlers
│ ├── resources.ts # Static resources
│ ├── resource-templates.ts # Dynamic resource templates
│ ├── prompts.ts # Prompt definitions
│ ├── tools.ts # Tool implementations
│ └── tmdb-api.ts # TMDB API wrapper
├── package.json
├── tsconfig.json
└── README.md
Use the MCP Inspector to test your server during development:
npx @modelcontextprotocol/inspector node build/index.js
MIT
Production-ready RAG out of the box to search and retrieve data from your own documents.
Unlock geospatial intelligence through Mapbox APIs like geocoding, POI search, directions, isochrones and more.
All-in-One SEO & Web Intelligence Toolkit API from FetchSERP.
Provides comprehensive patent search and statistical analysis for intelligence analysis, technological innovation, and intellectual property management.
An MCP server for the Context7 project, providing HTTP streaming and search endpoints for library information without local installation.
Fetch, convert, and search AWS documentation pages, with recommendations for related content.
A Model Context Protocol (MCP) server for the Open Library API that enables AI assistants to search for book and author information.
A bridge server for connecting to a SearXNG metasearch engine instance.
Interacting with Perplexity
RAG Search over your content powered by Inkeep