Unsloth AI Documentation
Search and retrieve content from the Unsloth AI documentation.
Unsloth AI Documentation MCP Server
A simple FastMCP implementation to connect to and query Unsloth AI documentation.
Overview
This MCP (Model Context Protocol) server provides access to Unsloth AI documentation through a set of tools that can fetch and search the documentation content. It's built using FastMCP, a Python framework for creating MCP servers.
Features
The server provides the following tools:
- search_unsloth_docs: Search the Unsloth documentation for specific topics or keywords
- get_unsloth_quickstart: Get the quickstart guide and installation instructions
- get_unsloth_models: Get information about supported models in Unsloth
- get_unsloth_tutorials: Get information about tutorials and fine-tuning guides
- get_unsloth_installation: Get detailed installation instructions
Installation
-
Clone or download this repository
-
Install dependencies:
pip install -r requirements.txtOr if you prefer using uv:
uv pip install -r requirements.txt
Usage
Running the Server
There are several ways to run the MCP server:
1. Direct Python execution
python unsloth_mcp_server.py
2. Using FastMCP CLI
fastmcp run unsloth_mcp_server.py:mcp
3. Using the test client
python test_client.py
Available Tools
search_unsloth_docs(query: str)
Search the Unsloth documentation for specific information.
Example:
result = await client.call_tool("search_unsloth_docs", {"query": "fine-tuning"})
get_unsloth_quickstart()
Get the quickstart guide and basic setup information.
Example:
result = await client.call_tool("get_unsloth_quickstart", {})
get_unsloth_models()
Get information about models supported by Unsloth.
Example:
result = await client.call_tool("get_unsloth_models", {})
get_unsloth_tutorials()
Get information about available tutorials and guides.
Example:
result = await client.call_tool("get_unsloth_tutorials", {})
get_unsloth_installation()
Get detailed installation instructions.
Example:
result = await client.call_tool("get_unsloth_installation", {})
Connecting to MCP Clients
This server can be used with any MCP-compatible client. The server runs using the standard MCP stdio transport protocol.
Claude Desktop Integration
To use this server with Claude Desktop, add the following to your Claude Desktop configuration:
{
"mcpServers": {
"unsloth-docs": {
"command": "python",
"args": ["path/to/unsloth_mcp_server.py"],
"cwd": "path/to/unsloth-mcp"
}
}
}
Other MCP Clients
The server can be used with any MCP client by pointing it to the server file:
from fastmcp import Client
client = Client("unsloth_mcp_server.py")
File Structure
unsloth-mcp/
├── README.md # This file
├── requirements.txt # Python dependencies
├── unsloth_mcp_server.py # Main MCP server implementation
└── test_client.py # Test client for testing the server
How It Works
- Web Scraping: The server fetches content from the Unsloth documentation website (https://docs.unsloth.ai)
- Content Processing: Uses BeautifulSoup to parse HTML and extract relevant text content
- Search Functionality: Implements simple keyword matching to find relevant sections
- MCP Protocol: Exposes the functionality through FastMCP tools that can be called by MCP clients
Dependencies
- fastmcp: The FastMCP framework for creating MCP servers
- requests: For making HTTP requests to fetch documentation
- beautifulsoup4: For parsing HTML content
Limitations
- The server currently performs simple keyword-based searching rather than semantic search
- It fetches content in real-time, which may be slower than cached content
- Limited to the main documentation page content (could be extended to crawl multiple pages)
Future Enhancements
Potential improvements could include:
- Caching: Cache documentation content to improve response times
- Multi-page Crawling: Fetch content from multiple documentation pages
- Semantic Search: Implement more sophisticated search using embeddings
- Content Indexing: Pre-index content for faster searches
- Rate Limiting: Add proper rate limiting for web requests
Contributing
Feel free to submit issues or pull requests to improve the server functionality.
License
This project is open source. Please check the Unsloth AI documentation website terms of use when using their content.
Related Servers
DNDzgz
Get real-time public transport information for Zaragoza using the DNDzgz API.
MCP Servers Search
Search and discover available MCP servers from the official repository.
Brave Search
An MCP server for web and local search using the Brave Search API.
arch-mcp
An AI-powered bridge to the Arch Linux ecosystem that enables intelligent package management, AUR access, and Arch Wiki queries through the Model Context Protocol (MCP).
Chromium CodeSearch Tools
Search Chromium source code using advanced Code Search syntax.
Amazon Shopping with Claude
An MCP server for searching and buying products on Amazon.
MCP Omnisearch
Unified access to multiple search providers and AI tools like Tavily, Perplexity, Kagi, Jina AI, Brave, and Firecrawl.
Bing Search
Perform web, news, and image searches using the Microsoft Bing Search API.
Qdrant MCP Server
Semantic code search using the Qdrant vector database and OpenAI embeddings.
Web Search
Enables free web searching using Google search results, with no API key required.