PyPI MCP Server
Search and access Python package metadata, version history, and download statistics from the PyPI repository.
PyPI MCP Server
🔍 Enabling AI assistants to search and access PyPI package information through a simple MCP interface.
PyPI MCP Server provides a bridge to the PyPI package repository for AI assistants through the Model Context Protocol (MCP). It allows AI models to programmatically search Python packages and access their metadata, supporting features like retrieving package information, searching packages, viewing version history, and download statistics.
✨ Core Features
- 🔎 Package Search: Query PyPI packages by keywords ✅
- 📊 Metadata Access: Get detailed metadata for specific packages ✅
- 📦 Version Information: Get all released versions of a package ✅
- 📈 Statistics Data: Get download statistics for packages ✅
- 🚀 Efficient Retrieval: Fast access to package information ✅
🚀 Quick Start
Prerequisites
- Python 3.10+
- httpx
- BeautifulSoup4
- mcp-python-sdk
- typing-extensions
Installation
-
Clone the repository:
git clone https://github.com/JackKuo666/PyPI-MCP-Server.git cd PyPI-MCP-Server
-
Install required dependencies:
pip install -r requirements.txt
Running the Server
python pypi_server.py
The server will communicate with MCP clients through standard input/output (stdio).
📚 MCP Tools
Get Package Information
get_package_info(package_name: str, version: Optional[str] = None) -> Dict
Get detailed information about a specified package, with optional version specification.
Search Packages
search_packages(query: str) -> List[Dict]
Search PyPI packages by keywords.
Get Package Releases
get_package_releases(package_name: str) -> Dict
Get all released version information for a specified package.
Get Package Statistics
get_package_stats(package_name: str) -> Dict
Get download statistics for a specified package.
🔧 Configuration
The server uses the MCP protocol to communicate with clients through standard input/output (stdio), no network port configuration needed.
📋 Integration with AI Assistants
Using Claude Desktop
Add the following configuration to your claude_desktop_config.json
:
{
"mcpServers": {
"pypi": {
"command": "python",
"args": ["pypi_server.py"]
}
}
}
Usage Examples
In your AI assistant, you can call the PyPI MCP tools as follows:
Use PyPI tool to search for Flask package:
@pypi search_packages("flask")
Get detailed information about a specific package:
@pypi get_package_info("requests")
Get information about a specific version of a package:
@pypi get_package_info("django", "4.2.0")
View all released versions of a package:
@pypi get_package_releases("numpy")
Get download statistics for a package:
@pypi get_package_stats("pandas")
📄 License
Related Servers
Console Automation
Production-ready MCP server for AI-driven console automation and monitoring. 40+ tools for session management, SSH, testing, and background jobs.
AI Agent Playwright
An AI agent for the Playwright MCP server, enabling automated web testing and interaction.
Netmind Code Interpreter
Execute code using the Netmind API.
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers without authentication.
Project Zomboid MCP Server
An AI-powered MCP server for Project Zomboid mod development, offering script validation, generation, and contextual assistance.
Odoo XML-RPC MCP Server
Interact with Odoo instances using the XML-RPC API. Requires configuration via environment variables or config files.
Codacy
Access the Codacy API to analyze code quality, coverage, and security for your repositories.
Jenkins Server MCP
A tool for interacting with Jenkins CI/CD servers, requiring environment variables for configuration.
BoostSecurity
BoostSecurity MCP acts as a safeguard preventing agents from adding vulnerable packages into projects. It analyzes every package an AI agent introduces, flags unsafe dependencies, and recommends secure, maintained alternatives to keep projects protected.
Second Opinion
Review commits and codebases using external LLMs like OpenAI, Google Gemini, and Mistral.