Linear Regression MCP
Train a Linear Regression model by uploading a CSV dataset file, demonstrating an end-to-end machine learning workflow.
Linear Regression MCP
Welcome to Linear Regression MCP! This project demonstrates an end-to-end machine learning workflow using Claude and the Model Context Protocol (MCP).
Claude can train a Linear Regression model entirely by itself, simply by uploading a CSV file containing the dataset. The system goes through the entire ML model training lifecycle, handling data preprocessing, training, and evaluation (RMSE calculation).
Setup and Installation
1. Clone the Repository:
First, clone the repository to your local machine:
git clone https://github.com/HeetVekariya/Linear-Regression-MCP
cd Linear-Regression-MCP
2. Install uv:
uv is an extremely fast Python package and project manager, written in Rust. It is essential for managing the server and dependencies in this project.
- Download and install
uvfrom here.
3. Install Dependencies:
Once uv is installed, run the following command to install all necessary dependencies:
uv sync
4. Configure Claude Desktop:
To integrate the server with Claude Desktop, you will need to modify the Claude configuration file. Follow the instructions for your operating system:
- For macOS or Linux:
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
- For Windows:
code $env:AppData\Claude\claude_desktop_config.json
- In the configuration file, locate the
mcpServerssection, and replace the placeholder paths with the absolute paths to youruvinstallation and the Linear Regression project directory. It should look like this:
{
"mcpServers":
{
"linear-regression":
{
"command": "ABSOLUTE/PATH/TO/.local/bin/uv",
"args":
[
"--directory",
"ABSOLUTE/PATH/TO/YOUR-LINEAR-REGRESSION-REPO",
"run",
"server.py"
]
}
}
}
- Once the file is saved, restart Claude Desktop to link with the MCP server.
Available Tools
The following tools are available in this project to help you work with the dataset and train the model:
| Tool | Description | Arguments |
|---|---|---|
upload_file(path) | Uploads a CSV file and stores it for processing. | path: Absolute path to the CSV file. |
get_columns_info() | Retrieves the column names in the uploaded dataset. | No arguments. |
check_category_columns() | Checks for any categorical columns in the dataset. | No arguments. |
label_encode_categorical_columns() | Label encodes categorical columns into numerical values. | No arguments. |
train_linear_regression_model(output_column) | Trains a linear regression model and calculates RMSE. | output_column: The name of the target column. |
Open for Contributions
I welcome contributions to this project! Whether it's fixing bugs, adding new features, or improving the documentation, feel free to fork the repository and submit pull requests.
If you have any suggestions or feature requests, open an issue, and I'll be happy to discuss them!
Related Servers
MCP Invoice Express
An MCP server for integrating with the InvoiceExpress API.
ComfyUI MCP Server
Integrates ComfyUI with MCP, allowing the use of custom workflows. Requires a running ComfyUI server.
NovaCV
An MCP server for accessing the NovaCV resume service API.
stdout-mcp-server
Captures and manages stdout logs from multiple processes via a named pipe system for real-time debugging and analysis.
Remote MCP Server (Authless)
A remote MCP server deployable on Cloudflare Workers without authentication.
DeepSeek-Claude MCP Server
Enhance Claude's reasoning capabilities by integrating DeepSeek's advanced engine.
NHL MCP Server
An MCP server for the NHL API, providing access to all documented endpoints.
LSP MCP Server
Integrates with Language Server Protocol (LSP) to provide features like code completion, diagnostics, and hover information.
Jenkins Server MCP
A tool for interacting with Jenkins CI/CD servers, requiring environment variables for configuration.
MCP Script Runner
Execute developer-defined bash scripts in a Dockerized environment for coding agents.
