MCP Script Runner
Execute developer-defined bash scripts in a Dockerized environment for coding agents.
MCP Script Runner
A Model Context Protocol (MCP) server that provides coding agents with a generic interface to execute developer-defined bash scripts within a Dockerized environment.
๐ Quick Start
Option 1: Docker (Recommended)
# Clone and run with Docker
git clone <repository-url>
cd devmcp
docker compose up --build -d
# Check logs
docker compose logs -f
Option 2: Local Installation
# Clone repository
git clone <repository-url>
cd devmcp
# Install dependencies
pip install -r requirements.txt
# Run the server
python -m mcp_script_runner.server
๐ Overview
The MCP Script Runner Server enables AI agents to:
- Execute predefined bash scripts with configurable arguments
- Manage working directories for different project contexts
- Get script information including descriptions and available arguments
- List available scripts dynamically
- Handle script timeouts and error conditions gracefully
๐ณ Docker Support
The project includes full Docker support for containerized execution:
- ๐ง Ready-to-use containers with all dependencies
- ๐ก๏ธ Isolated execution environment
- ๐ฆ Easy deployment with Docker Compose
- ๐ Debug capabilities with interactive shell access
See DOCKER.md for complete Docker usage guide.
Quick Docker Commands
# Start the MCP server
docker compose up --build -d
# Interactive development shell
docker compose --profile debug up shell
# Test script execution
docker compose exec mcp-script-runner bash scripts/hello.sh
๐ ๏ธ Installation
Prerequisites
- Python 3.11+
- Docker (for containerized execution)
- Bash-compatible shell
Local Setup
# Install Python dependencies
pip install -r requirements.txt
# Verify installation
python -c "from src.mcp_script_runner.server import main; print('โ
Installation OK')"
Docker Setup
# Build container
docker build -t mcp-script-runner .
# Or use Docker Compose
docker compose up --build
โ๏ธ Configuration
Configuration File: .mcp-config.json
{
"working_directory": ".",
"scripts": {
"hello": {
"path": "scripts/hello.sh",
"description": "Simple hello world script",
"arguments": [],
"timeout": 30
},
"list_files": {
"path": "scripts/list_files.sh",
"description": "List files in directory with options",
"arguments": ["directory", "options"],
"timeout": 10
}
}
}
Script Directory Structure
project/
โโโ .mcp-config.json
โโโ scripts/
โ โโโ hello.sh
โ โโโ list_files.sh
โ โโโ system_info.sh
โโโ src/
โโโ mcp_script_runner/
๐ง Available MCP Tools
Tool | Description | Arguments |
---|---|---|
run_script | Execute a configured script | script_name , arguments[] |
list_scripts | List all available scripts | None |
get_script_info | Get script details | script_name |
get_working_directory | Get current working directory | None |
set_working_directory | Set working directory | path |
reload_config | Reload configuration file | None |
Example Tool Usage
{
"tool": "run_script",
"arguments": {
"script_name": "hello",
"arguments": []
}
}
๐โโ๏ธ Running the Server
Local Execution
# Start MCP server (listens on stdio)
python -m mcp_script_runner.server
# Or with explicit path
PYTHONPATH=src python -m mcp_script_runner.server
Docker Execution
# Background service
docker compose up -d
# Interactive mode
docker compose run --rm mcp-script-runner
# Debug shell
docker compose --profile debug up shell
๐ Example Scripts
Basic Hello Script (scripts/hello.sh
)
#!/bin/bash
echo "Hello from MCP Script Runner!"
echo "Current directory: $(pwd)"
echo "Script arguments: $@"
echo "Date: $(date)"
File Listing Script (scripts/list_files.sh
)
#!/bin/bash
DIRECTORY=${1:-.}
OPTIONS=${2:-"-la"}
echo "Listing files in: $DIRECTORY"
ls $OPTIONS "$DIRECTORY"
System Info Script (scripts/system_info.sh
)
#!/bin/bash
echo "=== System Information ==="
echo "OS: $(uname -s)"
echo "Kernel: $(uname -r)"
echo "Architecture: $(uname -m)"
echo "Uptime: $(uptime)"
echo "Disk Usage:"
df -h
๐งช Testing
Unit Tests
# Run tests locally
python -m pytest tests/
# Run tests in Docker
docker compose run --rm mcp-script-runner python -m pytest tests/
Manual Testing
# Test script execution
python -c "
import asyncio
from src.mcp_script_runner.executor import ScriptExecutor
from src.mcp_script_runner.config import ConfigManager
async def test():
cm = ConfigManager()
ex = ScriptExecutor(cm)
result = await ex.execute_script('hello')
print(f'Exit code: {result.exit_code}')
print(result.stdout)
asyncio.run(test())
"
๐ Security Considerations
- ๐ก๏ธ Containerized execution isolates script execution
- ๐ค Non-root user inside containers (
mcpuser
) - ๐ Limited file access through volume mounts
- โฑ๏ธ Script timeouts prevent runaway processes
- ๐ซ No shell injection - arguments passed safely
๐ฏ Use Cases
Development Automation
- Build and test commands
- Code generation scripts
- Development environment setup
System Administration
- System monitoring scripts
- Backup and maintenance tasks
- Configuration management
CI/CD Integration
- Deployment scripts
- Environment validation
- Automated testing workflows
Project Management
- Task automation
- Report generation
- Resource management
๐ Troubleshooting
Common Issues
MCP Server Won't Start
# Check Python path
export PYTHONPATH=src
# Verify dependencies
pip install -r requirements.txt
# Check configuration
python -c "from src.mcp_script_runner.config import ConfigManager; cm = ConfigManager(); print('Config OK')"
Script Execution Fails
# Check script permissions
chmod +x scripts/*.sh
# Test script directly
bash scripts/hello.sh
# Check Docker logs
docker compose logs mcp-script-runner
Docker Issues
# Rebuild container
docker compose up --build
# Check container status
docker compose ps
# Interactive debugging
docker compose run --rm mcp-script-runner bash
Debug Mode
# Local debug
PYTHONPATH=src python -c "
import logging
logging.basicConfig(level=logging.DEBUG)
from mcp_script_runner.server import main
import asyncio
asyncio.run(main())
"
# Docker debug
docker compose --profile debug up shell
๐ Development
Project Structure
devmcp/
โโโ ๐ README.md # This file
โโโ ๐ณ DOCKER.md # Docker usage guide
โโโ ๐ TASKS.md # Development tasks
โโโ โ๏ธ .mcp-config.json # Configuration
โโโ ๐ณ Dockerfile # Container definition
โโโ ๐ณ docker-compose.yml # Container orchestration
โโโ ๐ฆ requirements.txt # Python dependencies
โโโ ๐ฆ pyproject.toml # Python project config
โโโ ๐ง scripts/ # Example scripts
โโโ ๐ src/mcp_script_runner/ # Python source code
โโโ ๐งช tests/ # Unit tests
Adding New Scripts
- Create script in
scripts/
directory - Make executable:
chmod +x scripts/myscript.sh
- Add to
.mcp-config.json
:
{
"scripts": {
"myscript": {
"path": "scripts/myscript.sh",
"description": "My custom script",
"arguments": ["arg1", "arg2"],
"timeout": 30
}
}
}
- Reload configuration: Use
reload_config
tool
Contributing
- Fork the repository
- Create feature branch
- Add tests for new functionality
- Test with Docker:
docker compose up --build
- Submit pull request
๐ Deployment
Production Deployment
# Using Docker Compose
docker compose up -d
# Using Docker Swarm
docker stack deploy -c docker-compose.yml mcp-stack
# Using Kubernetes
kubectl apply -f k8s/
Integration with MCP Clients
Claude Desktop Configuration
{
"mcpServers": {
"script-runner": {
"command": "docker",
"args": ["compose", "-f", "/path/to/devmcp/docker-compose.yml", "run", "--rm", "mcp-script-runner"]
}
}
}
๐ License
MIT License - see LICENSE file for details.
๐ค Support
- ๐ Documentation: See DOCKER.md for Docker usage
- ๐ Issues: Create GitHub issue
- ๐ฌ Discussions: GitHub Discussions
- ๐ง Contact: See repository contributors
Ready to get started?
๐ณ Docker users: docker compose up --build
๐ Local users: pip install -r requirements.txt && python -m mcp_script_runner.server
Related Servers
MCP RAG Server
A Python server providing Retrieval-Augmented Generation (RAG) functionality. It indexes various document formats and requires a PostgreSQL database with pgvector.
Lilith Shell
Execute terminal commands through a secure shell interface using an AI assistant.
OTP MCP Server
Generates secure One-Time Passwords (OTP) using TOTP and HOTP algorithms.
Scorecard
Access Scorecard's AI model evaluation and testing tools via a Cloudflare Workers deployment.
Digma
A code observability MCP enabling dynamic code analysis based on OTEL/APM data to assist in code reviews, issues identification and fix, highlighting risky code etc.
Figma
Integrate Figma design data with AI coding tools using a local MCP server.
DevContainer MCP Server
Manage DevContainer environments using natural language prompts in any MCP-compatible editor.
Remote MCP Server (Authless)
An example remote MCP server deployable on Cloudflare Workers without authentication.
Bifrost
Exposes VSCode's development tools and language features to AI tools through an MCP server.
Test Automator
An LLM-powered server for automating unit, integration, E2E, and API tests.