Nuanced MCP Server
Provides call graph analysis for LLMs using the nuanced library.
Nuanced MCP Server
A Model Context Protocol (MCP) server that provides call graph analysis capabilities to LLMs through the nuanced library.
Overview
This MCP server enables LLMs to understand code structure by accessing function call graphs through standardized tools and resources. It allows AI assistants to:
- Initialize call graphs for Python repos
- Explore function call relationships
- Analyze dependencies between functions
- Provide more contextually aware code assistance
API
Tools
-
initialize_graph
- Initialize a code graph for the given repository path
- Input:
repo_path(string)
-
switch_repository
- Switch to a different initialized repository
- Input:
repo_path(string)
-
list_repositories
- List all initialized repositories
- No inputs required
-
get_function_call_graph
- Get the call graph for a specific function
- Inputs:
file_path(string)function_name(string)repo_path(string, optional) - uses active repository if not specified
-
analyze_dependencies
- Find all module or file dependencies in the codebase
- Inputs (at least one required):
file_path(string, optional)module_name(string, optional)
-
analyze_change_impact
- Analyze the impact of changing a specific function
- Inputs:
file_path(string)function_name(string)
Resources
-
graph://summary
- Get a summary of the currently loaded code graph
- No parameters required
-
graph://repo/{repo_path}/summary
- Get a summary of a specific repository's code graph
- Parameters:
repo_path(string) - Path to the repository
-
graph://function/{file_path}/{function_name}
- Get detailed information about a specific function
- Parameters:
file_path(string) - Path to the file containing the functionfunction_name(string) - Name of the function to analyze
Prompts
-
analyze_function
- Create a prompt to analyze a function with its call graph
- Parameters:
file_path(string) - Path to the file containing the functionfunction_name(string) - Name of the function to analyze
-
impact_analysis
- Create a prompt to analyze the impact of changing a function
- Parameters:
file_path(string) - Path to the file containing the functionfunction_name(string) - Name of the function to analyze
-
analyze_dependencies_prompt
- Create a prompt to analyze dependencies of a file or module
- Parameters (at least one required):
file_path(string, optional) - Path to the file to analyzemodule_name(string, optional) - Name of the module to analyze
Usage with Claude Desktop
Add this to your claude_desktop_config.json
UV
{
"mcpServers": {
"nuanced": {
"command": "uv",
"args": [
"--directory",
"/path/to/nuanced-mcp",
"run",
"nuanced_mcp_server.py"
]
}
}
}
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Unified MCP Client Library
An open-source library to connect any LLM to any MCP server, enabling the creation of custom agents with tool access.
TradingCyborg MCP Server
A professional trading server with over 26 tools for Bybit API integration.
AI Counsel
True deliberative consensus MCP server where AI models debate and refine positions across multiple rounds
Flowise
Integrate with the Flowise API to create predictions and manage chatflows and assistants.
Bitrise
Manage apps, builds, and artifacts on Bitrise, a Continuous Integration and Delivery (CI/CD) platform.
Juspay MCP Tools
Interact with Juspay APIs for payment processing and merchant dashboard management.
Language Server
MCP Language Server gives MCP enabled clients access to semantic tools like get definition, references, rename, and diagnostics.
Deepseek Thinker
Provides Deepseek's reasoning capabilities to AI clients, supporting both the Deepseek API and local Ollama server modes.
OpenAPI to MCP
A Go tool for converting OpenAPI specifications into MCP tools.
WordPress Docs
Access WordPress documentation and development tools.