mcpcodeserver
Instead of direct calling MCP tools, mcpcode server transforms MCP tool calls into TypeScript programs, enabling smarter, lower-latency orchestration by LLMs.
mcpcodeserver
A Model Context Protocol (MCP) proxy server that translates tool calls into TypeScript code generation. Instead of making multiple tool calls back and forth, LLMs can write TypeScript code that calls multiple tools naturally, reducing token overhead and leveraging the LLM's superior code generation capabilities.
❌ Without mcpcodeserver
LLMs make multiple sequential tool calls, burning tokens and struggling with complex workflows:
- ❌ Multiple round-trips between LLM and tools
- ❌ Complex tool calling sequences are error-prone
- ❌ Data cannot easily be passed between tools
- ❌ Limited error handling and control flow
✅ With mcpcodeserver
LLMs write TypeScript code that calls multiple tools naturally:
- ✅ Write code to call multiple tools in sequence
- ✅ Use variables, loops, and conditionals naturally
- ✅ Better error handling with try/catch
- ✅ Reduce token usage by combining operations
- ✅ Leverage LLM's strong code generation capabilities
Quick Start
- Install mcpcodeserver in your MCP client (see installation section below)
- Create an
mcp.json
configuration file with your child MCP servers - Start using it - your LLM can now generate and execute TypeScript code that calls your tools
// Instead of multiple tool calls, write code like this:
const files = await filesystem.list_directory({ path: "/tmp" });
const results = await Promise.all(
files.map(file => filesystem.read_file({ path: file.path }))
);
return results.filter(content => content.includes("important"));
Overview
mcpcodeserver is a unique MCP server that:
- Acts as an MCP client to connect to one or more child MCP servers
- Discovers all tools from child servers
- Exposes three powerful tools to parent LLM clients:
list_servers
- Lists all available sub-servers connected to this MCP serverget_tool_definitions
- Returns TypeScript type definitions for discovered tools (optionally filtered by server)generate_and_execute_code
- Generates and executes TypeScript code that calls those tools in a sandbox
This architecture allows LLMs to orchestrate complex multi-tool workflows by writing code instead of making sequential tool calls, which is often more efficient and natural for modern language models.
Related Work & Research
This approach is inspired by recent research showing that LLMs perform better when generating executable code rather than making direct tool calls:
-
CodeAct: Your LLM Agent Acts Better when Generating Code (Apple, ICML 2024) - Demonstrates that LLM agents achieve up to 20% higher success rates when using executable Python code as a unified action space instead of pre-defined tool calling formats.
-
Cloudflare Code Mode - A similar implementation that converts MCP tools into TypeScript APIs, showing that "LLMs are better at writing code to call MCP, than at calling MCP directly."
The key insight from this research is that LLMs have extensive training on real-world code but limited exposure to synthetic tool-calling formats, making code generation a more natural and effective approach for complex agent workflows.
Why Use This?
Traditional Tool Calling Problems
- Multiple round-trips between LLM and tools burn tokens
- LLMs often struggle with complex tool calling sequences
- Each tool call requires JSON schema understanding and formatting
- Data cannot easily be passed between tools without going through the LLM
Code Generation Solution
- Write TypeScript code to call multiple tools in sequence
- Use variables, loops, and conditionals naturally
- Better error handling with try/catch
- Reduce token usage by combining operations
- Leverage LLM's strong code generation capabilities
Dynamic Tool Discovery
mcpcodeserver automatically monitors child MCP servers for tool changes and notifies parent clients when tools are added, removed, or modified:
- Automatic Refresh: Checks for tool changes every 30 seconds
- Real-time Notifications: Sends
notifications/tools/list_changed
to parent clients - Dynamic Updates: Tool definitions and summaries update automatically
- No Manual Refresh: Parent LLMs receive notifications to refresh their tool knowledge
This ensures that parent LLMs always have the most current tool definitions without requiring manual intervention.
Server Filtering
To reduce context window usage and improve focus, mcpcodeserver supports filtering tool definitions by specific servers:
- List Available Servers: Use
list_servers
to see all connected sub-servers - Filtered Tool Definitions: Use
get_tool_definitions
withserver_names
parameter to get tools from specific servers only - Reduced Verbosity: Get focused TypeScript definitions without overwhelming the LLM's context window
- Method Namespacing: All generated functions are prefixed with server names (e.g.,
pizzashop_create_pizza
,filesystem_read_file
)
Example usage:
// List available servers
const servers = await list_servers({});
// Returns: ["pizzashop", "filesystem", "memory"]
// Get all tool definitions
const allTools = await get_tool_definitions({});
// Get only pizzashop tools
const pizzashopTools = await get_tool_definitions({
server_names: ["pizzashop"]
});
Advanced MCP Features
mcpcodeserver supports pass-through of advanced MCP protocol features when both parent and child servers support them:
- Elicitation: Child servers can request user input during tool execution, which is passed through to parent clients
- Roots: Lists and aggregates roots from all child servers, providing a unified view of available resources
- Sampling: Enables LLM sampling requests to be passed through to child servers for advanced AI capabilities
These features are automatically advertised to parent clients and work seamlessly when supported by the underlying child MCP servers.
Quick Start
Try it immediately with npx (no installation required):
# From GitHub
npx github:zbowling/mcpcodeserver --help
# Or when published to npm
npx mcpcodeserver --help
🛠️ Installation
Requirements
- Node.js >= v18.0.0
- Cursor, Claude Code, VSCode, Windsurf or another MCP Client
Installing via Smithery
To install mcpcodeserver for any client automatically via Smithery:
npx -y @smithery/cli@latest install mcpcodeserver --client <client-name> --key <smithery-key>
Install in Cursor
Go to: Settings
-> Cursor Settings
-> MCP
-> Add new global MCP server
Pasting the following configuration into your Cursor ~/.cursor/mcp.json
file is the recommended approach. You may also install in a specific project by creating .cursor/mcp.json
in your project folder.
Cursor One-Click Installation
Cursor Local Server Connection
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
Cursor Remote Server Connection (if you set up HTTP transport)
{
"mcpServers": {
"mcpcodeserver": {
"url": "http://localhost:3000/mcp"
}
}
}
Install in Claude Code
Run this command. See Claude Code MCP docs for more info.
Claude Code Local Server Connection
claude mcp add mcpcodeserver -- npx -y mcpcodeserver --config /path/to/your/mcp.json
Claude Code Remote Server Connection
claude mcp add --transport http mcpcodeserver http://localhost:3000/mcp
Install in VSCode
VSCode One-Click Installation
VSCode Manual Configuration
Add to your VSCode MCP settings:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
Install in Windsurf
Windsurf One-Click Installation
Install in AI Coding Assistants
For Continue, Cline, and RooCode, add to your configuration:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
Install in Amp
Run this command in your terminal. See Amp MCP docs for more info.
amp mcp add mcpcodeserver -- npx -y mcpcodeserver --config /path/to/your/mcp.json
Install in Text Editors
For Aider, Codium, Zed, Nova, and Sublime Text, add to your configuration:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
Install in Neovim
Add to your Neovim MCP configuration:
{
mcpServers = {
mcpcodeserver = {
command = "npx",
args = {"-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"}
}
}
}
Install in Emacs
Add to your Emacs MCP configuration:
(setq mcp-servers
'((mcpcodeserver
:command "npx"
:args ("-y" "mcpcodeserver" "--config" "/path/to/your/mcp.json"))))
Install in JetBrains IDEs
For IntelliJ IDEA, WebStorm, PyCharm, and Android Studio, add to your MCP settings:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
Install in AI Tools
For Codeium, Tabnine, GitHub Copilot, and Amazon CodeWhisperer, add to your MCP settings:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
Install in Cloud IDEs
For Replit, CodeSandbox, StackBlitz, GitPod, GitHub Codespaces, GitLab Web IDE, and Bitbucket Cloud, add to your MCP settings:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
Install in Other Tools
For Xcode, Fleet, Sourcegraph, and JetBrains Gateway, add to your MCP configuration:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
Install in Remote Development
For remote development environments, you can also use HTTP transport:
{
"mcpServers": {
"mcpcodeserver": {
"url": "http://your-server:3000/mcp"
}
}
}
Configuration File
Create an mcp.json
configuration file to define your child MCP servers:
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/tmp"],
"env": { "DEBUG": "false" }
},
"memory": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-memory"]
},
"brave-search": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"env": { "BRAVE_API_KEY": "your-api-key" }
}
}
}
Installation for Development
# Install dependencies (using Bun for faster performance)
bun install
# Or with npm
npm install
# Build the project
bun run build
# Test the built server
bun dist/index.js --help
Note: This project uses Bun for better performance, but npm/node also work fine.
🚨 Troubleshooting
Module Not Found Errors
If you encounter ERR_MODULE_NOT_FOUND
, try using bunx
instead of npx
:
{
"mcpServers": {
"mcpcodeserver": {
"command": "bunx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
ESM Resolution Issues
For errors like Error: Cannot find module
, try the --experimental-vm-modules
flag:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "--node-options=--experimental-vm-modules", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
TLS/Certificate Issues
Use the --experimental-fetch
flag to bypass TLS-related problems:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "--node-options=--experimental-fetch", "mcpcodeserver", "--config", "/path/to/your/mcp.json"]
}
}
}
General MCP Client Errors
- Try adding
@latest
to the package name - Use
bunx
as an alternative tonpx
- Consider using
deno
as another alternative - Ensure you're using Node.js v18 or higher for native fetch support
Configuration Issues
- Make sure your
mcp.json
file is valid JSON - Check that all child server commands are available in your PATH
- Verify that child servers can start independently
- Check file permissions for the config file path
Testing with MCP Inspector
npx -y @modelcontextprotocol/inspector npx mcpcodeserver --config /path/to/your/mcp.json
💻 Development
CLI Arguments
mcpcodeserver
accepts the following CLI flags:
--config <path>
– Path to the MCP configuration file (default:./mcp.json
)--transport <stdio|http>
– Transport to use (stdio
by default). Note that HTTP transport automatically provides both HTTP and SSE endpoints--port <number>
– Port to listen on when usinghttp
transport (default3000
)--help
– Show help message
Example with HTTP transport and port 8080:
npx mcpcodeserver --config /path/to/mcp.json --transport http --port 8080
Example with stdio transport:
npx mcpcodeserver --config /path/to/mcp.json --transport stdio
Environment Variables
You can use environment variables for configuration:
MCP_CONFIG_PATH
– Path to the MCP configuration file (alternative to--config
)MCP_TRANSPORT
– Transport type (alternative to--transport
)MCP_PORT
– Port number for HTTP transport (alternative to--port
)
Example with environment variables:
# .env
MCP_CONFIG_PATH=/path/to/your/mcp.json
MCP_TRANSPORT=stdio
Example MCP configuration using environment variables:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver"],
"env": {
"MCP_CONFIG_PATH": "/path/to/your/mcp.json"
}
}
}
}
Note: CLI flags take precedence over environment variables when both are provided.
Local Development Configuration
For local development, you can run the TypeScript source directly:
{
"mcpServers": {
"mcpcodeserver": {
"command": "npx",
"args": ["tsx", "/path/to/mcpcodeserver/src/index.ts", "--config", "/path/to/your/mcp.json"]
}
}
}
Running Modes
Stdio Mode (Default)
The server runs in stdio mode by default, which is perfect for integration with MCP clients like Claude Desktop:
# Run in stdio mode
npx mcpcodeserver --config mcp.json
# Or with custom config path
npx mcpcodeserver --config /path/to/your/mcp.json
HTTP Mode
For debugging, testing, or integration with web-based MCP clients, you can run the server in HTTP mode:
# Run in HTTP mode on default port 3000
npx mcpcodeserver --http --config mcp.json
# Run on custom port and host
npx mcpcodeserver --http --port 8080 --host 0.0.0.0 --config mcp.json
When running in HTTP mode, the server will be available at:
- Server URL:
http://localhost:3000/mcp
(or your custom host:port) - MCP Inspector: Use
npx @modelcontextprotocol/inspector http://localhost:3000/mcp
to debug and test
MCP Inspector Integration
The MCP Inspector is a powerful tool for debugging and testing MCP servers. When running in HTTP mode, you can use it to:
- Inspect available tools and their schemas
- Test tool calls interactively
- Debug resource access and prompts
- Monitor real-time notifications
# Start the server in HTTP mode
npx mcpcodeserver --http --config mcp.json
# In another terminal, start the MCP Inspector
npx @modelcontextprotocol/inspector http://localhost:3000/mcp
# Or use the shorthand script (includes all example servers)
npm run inspector
The inspector will open in your browser and provide a full interface for exploring and testing your MCP server.
Note: The npm run inspector
command uses mcp-test.json
which includes 8 MCP servers (67 tools total) from the official examples, including both TypeScript (npx
) and Python (uvx
) based servers.
Configuration
Create an mcp.json
file that defines which child MCP servers to connect to. This follows the standard MCP client configuration format:
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/tmp"],
"env": {
"DEBUG": "false"
}
},
"github": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-github"],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "your-token-here"
}
},
"weather": {
"url": "http://localhost:3000/mcp",
"transport": "sse"
}
}
}
Configuration Options
Each server entry supports:
For stdio transport:
command
(required) - The command to execute (e.g., "node", "python", "npx")args
(optional) - Array of arguments to pass to the commandenv
(optional) - Environment variables for the child process
For HTTP/SSE transport:
url
(required) - The HTTP endpoint URLtransport
- Set to "sse" for Server-Sent Events
Usage
Starting the Server
# Use default config (./mcp.json)
mcpcodeserver
# Use custom config location
mcpcodeserver --config /path/to/custom-mcp.json
# Show help
mcpcodeserver --help
Using as an MCP Server
Configure mcpcodeserver in your MCP client (like Claude Desktop, Claude Code, Cline, etc.):
With npx (recommended - no installation needed):
{
"mcpServers": {
"codeserver": {
"command": "npx",
"args": ["-y", "mcpcodeserver", "--config", "/path/to/mcp.json"]
}
}
}
From GitHub (works immediately):
{
"mcpServers": {
"codeserver": {
"command": "npx",
"args": ["-y", "github:zbowling/mcpcodeserver", "--config", "/path/to/mcp.json"]
}
}
}
With other package managers:
// yarn
{ "command": "yarn", "args": ["dlx", "mcpcodeserver", "--config", "/path/to/mcp.json"] }
// pnpm
{ "command": "pnpm", "args": ["dlx", "mcpcodeserver", "--config", "/path/to/mcp.json"] }
// bun
{ "command": "bunx", "args": ["mcpcodeserver", "--config", "/path/to/mcp.json"] }
See examples/ for more configuration examples and MCP client-specific setups.
Tool 1: get_tool_definitions
This tool returns TypeScript type definitions for all discovered tools from child servers.
Input:
include_examples
(optional boolean) - Whether to include usage examples
Example:
// Call the tool (in your MCP client)
get_tool_definitions({ include_examples: true })
Output: Returns TypeScript code with interfaces and function declarations:
/**
* Auto-generated TypeScript definitions for MCP tools
*/
interface ToolResult {
content: Array<{
type: string;
text?: string;
// ...
}>;
isError?: boolean;
}
/**
* Read contents of a file
* Server: filesystem
* Tool: read_file
*/
interface ReadFileParams {
path: string;
}
declare function filesystem_read_file(params: ReadFileParams): Promise<ToolResult>;
// ... more tool definitions
Tool 2: generate_and_execute_code
This tool executes TypeScript code in a sandbox with access to all discovered tool functions.
Input:
code
(required string) - TypeScript/JavaScript code to executetimeout
(optional number) - Max execution time in milliseconds (default: 30000, max: 300000)
Example:
// Call the tool with TypeScript code
generate_and_execute_code({
code: `
// Read multiple files and combine them
const file1 = await filesystem_read_file({ path: "/tmp/file1.txt" });
const file2 = await filesystem_read_file({ path: "/tmp/file2.txt" });
const text1 = file1.content[0].text;
const text2 = file2.content[0].text;
console.log("File 1 length:", text1.length);
console.log("File 2 length:", text2.length);
return {
combined: text1 + text2,
totalLength: text1.length + text2.length
};
`
})
Output:
=== Console Output ===
File 1 length: 42
File 2 length: 38
=== Result ===
{
"combined": "...",
"totalLength": 80
}
Sandbox Environment
The TypeScript execution sandbox provides:
Available:
- All discovered tool functions (as async functions)
- Console methods:
console.log()
,console.error()
,console.warn()
,console.info()
- Basic JavaScript globals:
Math
,JSON
,Date
,Array
,Object
,String
,Number
,Boolean
- Promise and async/await support
- Error handling with try/catch
- Timers:
setTimeout
,setInterval
,clearTimeout
,clearInterval
Not Available:
- Node.js modules (fs, http, child_process, etc.)
- File system access (except via MCP tools)
- Network access (except via MCP tools)
- Process information
Security Note: This is not a fully secure sandbox. The VM context provides isolation but is not bulletproof. Only execute trusted code.
Error Handling
Errors in the sandbox are caught and returned with stack traces:
generate_and_execute_code({
code: `
try {
const result = await filesystem_read_file({ path: "/nonexistent" });
return result;
} catch (error) {
console.error("Failed to read file:", error.message);
throw error; // Re-throw to surface to parent
}
`
})
Testing with Claude Code
Want to try mcpcodeserver with Claude Code? Use the one-command setup:
./setup-claude-code-test.sh
This will build the project, install test dependencies, and show you exactly what to add to your Claude Code configuration. See TESTING_WITH_CLAUDE.md for detailed instructions.
Development
# Install dependencies
bun install
# Build the project
bun run build
# Watch mode for development
bun run dev
# Run the server
bun start
# Run tests
bun test # All tests
bun run test:unit # Unit tests only
bun run test:integration # Integration tests (requires Python)
# Code quality
bun run lint # Check linting
bun run format # Format code
bun run typecheck # Type checking
Project Structure
See AGENTS.md for detailed project structure and component documentation.
Use Cases
Multi-File Operations
Instead of making multiple tool calls through the LLM, write code:
const files = ["/tmp/a.txt", "/tmp/b.txt", "/tmp/c.txt"];
const contents = await Promise.all(
files.map(path => filesystem_read_file({ path }))
);
return contents.map(r => r.content[0].text);
Data Transformation
Process data between tool calls without LLM intervention:
const data = await api_fetch({ url: "https://api.example.com/data" });
const json = JSON.parse(data.content[0].text);
const filtered = json.items.filter(item => item.active);
return filtered.length;
Conditional Logic
Make decisions based on tool results:
const exists = await filesystem_read_file({ path: "/tmp/config.json" });
if (exists.isError) {
console.log("Config doesn't exist, using defaults");
return { source: "defaults" };
} else {
return { source: "file", config: JSON.parse(exists.content[0].text) };
}
Error Recovery
Handle errors gracefully without aborting the entire workflow:
const results = [];
for (const path of ["/tmp/a.txt", "/tmp/b.txt", "/tmp/c.txt"]) {
try {
const content = await filesystem_read_file({ path });
results.push({ path, success: true, data: content });
} catch (error) {
results.push({ path, success: false, error: error.message });
}
}
return results;
Upstream MCP Servers Integration
mcpcodeserver can integrate with official upstream MCP servers from the Model Context Protocol servers repository. This allows you to use real, production-ready MCP servers alongside your custom tools.
Supported Upstream Servers
- filesystem: File system operations (read, write, list directories)
- memory: In-memory key-value storage
- sqlite: SQLite database operations
- github: GitHub API integration
- brave-search: Web search capabilities
- fetch: HTTP request capabilities
Example Configuration
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/tmp"]
},
"memory": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-memory"]
},
"sqlite": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-sqlite", "--db-path", "/tmp/test.db"]
}
}
}
Testing Upstream Integration
The project includes comprehensive tests for upstream server integration:
# Run upstream servers integration tests
bun tests/integration/run-upstream-tests.ts
# Or manually test with upstream config
npx mcpcodeserver --config tests/integration/upstream-test-config.json
Cross-Server Workflows
With upstream servers, you can create powerful cross-server workflows:
// Store database query results in memory and write to file
const queryResult = await sqlite_execute_sql({
sql: "SELECT COUNT(*) as count FROM users"
});
const count = queryResult.content[0].text;
await memory_create({
key: "user-count",
value: count
});
await filesystem_write_file({
path: "/tmp/user-count.txt",
content: `Total users: ${count}`
});
Limitations
- Execution timeout: Maximum 5 minutes (configurable, default 30 seconds)
- Memory: Limited by Node.js VM context
- No persistent state between executions
- Cannot require/import external modules
- Not a security sandbox - don't run untrusted code
Contributing
Contributions welcome! This project is built with:
- TypeScript 5.7+
- Node.js 18+
- MCP TypeScript SDK 1.20+
- Zod for validation
See CONTRIBUTING.md for detailed contribution guidelines.
Support
If you find this project helpful, consider buying me a coffee!
License
MIT
Resources
Related Servers
ZenML
Interact with your MLOps and LLMOps pipelines through your ZenML MCP server
MCP Chart Server
Generates TradingView chart visualizations using the Chart-IMG API.
Node.js API Docs
An MCP server for accessing and searching Node.js API documentation.
MCP Agentic Development Platform
A comprehensive MCP development environment with interactive visualizations, multiple client interfaces, and advanced agentic capabilities.
MCP Server Starter Template
A starter template for building Model Context Protocol (MCP) servers, designed for UI libraries and component registries.
YAPI MCP PRO
An MCP server for the YApi interface management platform, enabling direct operation and full lifecycle management within AI editors.
Synth MCP
Access financial data like stock prices, currency info, and insider trading data using the Synth Finance API.
Google Apps Script MCP Server
Manage Google Apps Script projects, including creation, editing, deployment, and execution. Requires Google Cloud credentials for authentication.
Octomind
Create and manage end-to-end tests using the Octomind platform.
Gemma MCP Client
A client for Google's Gemma-3 model that enables function calling through MCP.