Gemma MCP Client
A client for Google's Gemma-3 model that enables function calling through MCP.
Gemma MCP Client
A Python package that combines Google's Gemma language model with MCP (Model Content Protocol) server integration, enabling powerful function calling capabilities across both local functions and remote MCP tools.
Features
- Seamless integration with Google's Gemma language model
- Support for both local Python functions and remote MCP tools
- Automatic tool discovery and registration from MCP servers
- Python-style function calling syntax
- Proper resource management with async context managers
- Support for multiple MCP servers
- Easy testing through test server support
Installation
uv add gemma-mcp # or pip install gemma-mcp if you love the old way
Requirements
- Python 3.10+
google-genai: Google Generative AI Python SDKFastMCPMCP utilities
Usage
Basic Usage
from gemma_mcp import GemmaMCPClient
# a standard MCP configuration
mcp_config = {
"mcpServers": {
"weather": {
"url": "https://weather-api.example.com/mcp"
},
"assistant": {
"command": "python",
"args": ["./assistant_server.py"]
}
}
}
# Initialize client with MCP support
async with GemmaMCPClient(mcp_config=mcp_config).managed() as client:
# Chat with automatic function execution
response = await client.chat(
"What's the weather like in London?",
execute_functions=True
)
print(response)
Adding Local Functions
You can add local functions in three ways:
- Using a callable:
async def my_function(param1: str, param2: int = 0):
"""Function description."""
return {"result": param1 + str(param2)}
client.add_function(my_function)
- Using a dictionary:
function_def = {
"name": "my_function",
"description": "Function description",
"parameters": {
"type": "object",
"properties": {
"param1": {"type": "string"},
"param2": {"type": "integer", "default": 0}
},
"required": ["param1"]
}
}
client.add_function(function_def)
- Using a FunctionDefinition object:
from gemma_mcp import FunctionDefinition
function_def = FunctionDefinition(
name="my_function",
description="Function description",
parameters={
"type": "object",
"properties": {
"param1": {"type": "string"},
"param2": {"type": "integer", "default": 0}
},
"required": ["param1"]
},
required=["param1"]
)
client.add_function(function_def)
MCP Server Configuration
The MCP configuration supports multiple server types:
- servers with SSE transport:
mcp_config = {
"mcpServers": {
"server_name": {
"url": "https://server-url/mcp"
}
}
}
- servers with STDIO transport:
mcp_config = {
"mcpServers": {
"server_name": {
"command": "python",
"args": ["./server.py"]
}
}
}
Testing
The package includes support for testing with in-memory MCP servers:
from fastmcp import FastMCP
from gemma_mcp import GemmaMCPClient
# Create test server
mcp = FastMCP("Test Server")
# Initialize client with test server
client = GemmaMCPClient()
client.mcp_client.add_test_server(mcp)
# Use the client as normal
async with client.managed():
response = await client.chat("Test message", execute_functions=True)
API Reference
GemmaMCPClient
The main client class that handles both Gemma model interactions and MCP tool integration.
Parameters
api_key(str, optional): Gemini API key. If not provided, will look for GEMINI_API_KEY env varmodel(str): Model to use, defaults to "gemma-3-27b-it"temperature(float): Generation temperature, defaults to 0.7system_prompt(str, optional): Custom system promptmcp_config(dict, optional): MCP configuration dictionary
Methods
add_function(function): Add a function definitionchat(message, execute_functions=False): Send a message and get responseinitialize(): Initialize the client and all componentscleanup(): Clean up all resources
FunctionDefinition
A dataclass for representing function definitions.
Parameters
name(str): Function namedescription(str): Function descriptionparameters(dict): Function parameters schemarequired(list): List of required parameterscallable(callable, optional): The actual callable function
License
MIT License
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Mindpilot MCP
Visualize legacy code and inspect complex flows to understand your agent's operations.
MCP Performance Analysis Server
A server for detecting critical performance issues in code, providing concise analysis and output.
Petclinic
Interacts with the Swagger Petstore API using Petclinic v3 APIs, exposing tools for OpenAI models.
Sequa MCP
A proxy that connects local STDIO with remote MCP servers, enabling IDEs to use MCP without extra infrastructure.
Blockchain Vulnerability Analyzer
Analyzes blockchain smart contracts for vulnerabilities using Mythril and Slither.
Octomind
Create and manage end-to-end tests using the Octomind platform.
Atla
Enable AI agents to interact with the Atla API for state-of-the-art LLMJ evaluation.
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers without authentication.
SonarCloud
Fetch SonarCloud issues related to pull requests.
BlenderMCP
Integrates with Blender to enable text and image-based 3D model editing using the Model Context Protocol.