Gemma MCP Client
A client for Google's Gemma-3 model that enables function calling through MCP.
Gemma MCP Client
A Python package that combines Google's Gemma language model with MCP (Model Content Protocol) server integration, enabling powerful function calling capabilities across both local functions and remote MCP tools.
Features
- Seamless integration with Google's Gemma language model
- Support for both local Python functions and remote MCP tools
- Automatic tool discovery and registration from MCP servers
- Python-style function calling syntax
- Proper resource management with async context managers
- Support for multiple MCP servers
- Easy testing through test server support
Installation
uv add gemma-mcp # or pip install gemma-mcp if you love the old way
Requirements
- Python 3.10+
google-genai
: Google Generative AI Python SDKFastMCP
MCP utilities
Usage
Basic Usage
from gemma_mcp import GemmaMCPClient
# a standard MCP configuration
mcp_config = {
"mcpServers": {
"weather": {
"url": "https://weather-api.example.com/mcp"
},
"assistant": {
"command": "python",
"args": ["./assistant_server.py"]
}
}
}
# Initialize client with MCP support
async with GemmaMCPClient(mcp_config=mcp_config).managed() as client:
# Chat with automatic function execution
response = await client.chat(
"What's the weather like in London?",
execute_functions=True
)
print(response)
Adding Local Functions
You can add local functions in three ways:
- Using a callable:
async def my_function(param1: str, param2: int = 0):
"""Function description."""
return {"result": param1 + str(param2)}
client.add_function(my_function)
- Using a dictionary:
function_def = {
"name": "my_function",
"description": "Function description",
"parameters": {
"type": "object",
"properties": {
"param1": {"type": "string"},
"param2": {"type": "integer", "default": 0}
},
"required": ["param1"]
}
}
client.add_function(function_def)
- Using a FunctionDefinition object:
from gemma_mcp import FunctionDefinition
function_def = FunctionDefinition(
name="my_function",
description="Function description",
parameters={
"type": "object",
"properties": {
"param1": {"type": "string"},
"param2": {"type": "integer", "default": 0}
},
"required": ["param1"]
},
required=["param1"]
)
client.add_function(function_def)
MCP Server Configuration
The MCP configuration supports multiple server types:
- servers with SSE transport:
mcp_config = {
"mcpServers": {
"server_name": {
"url": "https://server-url/mcp"
}
}
}
- servers with STDIO transport:
mcp_config = {
"mcpServers": {
"server_name": {
"command": "python",
"args": ["./server.py"]
}
}
}
Testing
The package includes support for testing with in-memory MCP servers:
from fastmcp import FastMCP
from gemma_mcp import GemmaMCPClient
# Create test server
mcp = FastMCP("Test Server")
# Initialize client with test server
client = GemmaMCPClient()
client.mcp_client.add_test_server(mcp)
# Use the client as normal
async with client.managed():
response = await client.chat("Test message", execute_functions=True)
API Reference
GemmaMCPClient
The main client class that handles both Gemma model interactions and MCP tool integration.
Parameters
api_key
(str, optional): Gemini API key. If not provided, will look for GEMINI_API_KEY env varmodel
(str): Model to use, defaults to "gemma-3-27b-it"temperature
(float): Generation temperature, defaults to 0.7system_prompt
(str, optional): Custom system promptmcp_config
(dict, optional): MCP configuration dictionary
Methods
add_function(function)
: Add a function definitionchat(message, execute_functions=False)
: Send a message and get responseinitialize()
: Initialize the client and all componentscleanup()
: Clean up all resources
FunctionDefinition
A dataclass for representing function definitions.
Parameters
name
(str): Function namedescription
(str): Function descriptionparameters
(dict): Function parameters schemarequired
(list): List of required parameterscallable
(callable, optional): The actual callable function
License
MIT License
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Related Servers
Lean LSP
Interact with the Lean theorem prover via the Language Server Protocol (LSP), enabling LLM agents to understand, analyze, and modify Lean projects.
MCP TypeScript Implementation
A TypeScript implementation of the Model Context Protocol for the Personal Intelligence Framework.
LLMling
An MCP server with an LLMling backend that uses YAML files to configure LLM applications.
PsiAnimator-MCP
A server for quantum physics simulation and animation, using QuTip for computations and Manim for visualizations.
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers without authentication.
Qase MCP Server
An MCP server for interacting with the Qase test management platform.
Website Generator MCP
An example MCP server designed for deployment on Cloudflare Workers, supporting both remote and local setups.
NestJS MCP Server Module
A NestJS module for building MCP servers to expose tools and resources for AI, with support for multiple transport types.
Flutter Package MCP Server
A Model Context Protocol (MCP) server for Flutter packages, designed to integrate with AI assistants like Claude.
MCP Analytics with GitHub OAuth
A remote MCP server with GitHub OAuth authentication and built-in analytics tracking.