MCP Simple Server
A simple MCP server with streamable HTTP transport that supports basic math tools like add and multiply.
MCP Simple Server
A minimal, reference implementation of a Model Context Protocol server with streamable HTTP transport. Built with FastMCP following the official Anthropic MCP specification 2025-06-18. Perfect starting point for building remote MCP servers.
๐ฏ Purpose
This project serves as a simple, well-documented reference for developers who want to:
- Build their first MCP server
- Deploy MCP servers to cloud platforms (Railway, Heroku, Render)
- Understand the MCP protocol implementation
- Create a foundation for more sophisticated MCP solutions
Features
- โ
Two Math Tools:
addandmultiplyfunctions - โ Streamable HTTP Transport: Modern MCP protocol with SSE support
- โ Session Management: Proper MCP initialization flow
- โ Remote Deployment: Railway, Heroku, Render deployment configs
- โ Automated Testing: Complete protocol validation and debugging tools
- โ Claude Desktop Integration: Ready for AI assistant integration
- โ Reference Implementation: Well-documented code for learning
Quick Start
Local Development
git clone https://github.com/oleksandrsirenko/mcp-simple-server.git
cd mcp-simple-server
uv sync
source .venv/bin/activate
python main.py
Server starts at: http://localhost:8000/mcp/
Test the Server
python test_server.py
Expected output:
๐งช Starting MCP Server Tests
โ
Initialize successful - Server: Simple Server
โ
Initialized notification sent
โ
Found 2 tools: add, multiply
โ
Add tool returned correct result
โ
Multiply tool returned correct result
๐ All tests passed!
Available Tools
add(a, b)
Adds two numbers together.
Example:
{"name": "add", "arguments": {"a": 25, "b": 17}}
โ Returns: 42
multiply(a, b)
Multiplies two numbers together.
Example:
{"name": "multiply", "arguments": {"a": 8, "b": 6}}
โ Returns: 48
Manual Testing with curl
Local Testing (Development)
For testing your local development server running on localhost:8000:
1. Initialize Session
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "MCP-Protocol-Version: 2025-06-18" \
-H "Accept: application/json, text/event-stream" \
-d '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2025-06-18","capabilities":{"tools":{}},"clientInfo":{"name":"test-client","version":"1.0.0"}}}'
2. Send Initialized Notification
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "MCP-Protocol-Version: 2025-06-18" \
-H "Accept: application/json, text/event-stream" \
-H "Mcp-Session-Id: YOUR_SESSION_ID" \
-d '{"jsonrpc":"2.0","method":"notifications/initialized"}'
3. List Tools
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "MCP-Protocol-Version: 2025-06-18" \
-H "Accept: application/json, text/event-stream" \
-H "Mcp-Session-Id: YOUR_SESSION_ID" \
-d '{"jsonrpc":"2.0","id":2,"method":"tools/list"}'
4. Call Add Tool
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "MCP-Protocol-Version: 2025-06-18" \
-H "Accept: application/json, text/event-stream" \
-H "Mcp-Session-Id: YOUR_SESSION_ID" \
-d '{"jsonrpc":"2.0","id":3,"method":"tools/call","params":{"name":"add","arguments":{"a":25,"b":17}}}'
Remote Testing (Production)
For testing your deployed server, replace localhost:8000 with your deployment URL:
# Example with Railway deployment
curl -X POST https://your-app.railway.app/mcp/ \
-H "Content-Type: application/json" \
-H "MCP-Protocol-Version: 2025-06-18" \
-H "Accept: application/json, text/event-stream" \
-d '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2025-06-18","capabilities":{"tools":{}},"clientInfo":{"name":"test-client","version":"1.0.0"}}}'
Note: For comprehensive remote testing, use the automated test script:
python test_deployment.py your-app.railway.app
Deployment
Railway (Recommended)
-
Push to GitHub:
git add . git commit -m "ready for deployment" git push origin main -
Deploy to Railway:
- Go to railway.app
- Click "Deploy from GitHub repo"
- Select your repository
- Railway auto-detects Dockerfile and deploys
-
Test your deployment:
python test_deployment.py your-app-name.up.railway.app -
Your MCP URL:
https://your-app.railway.app/mcp/
Heroku
heroku create your-mcp-server
git push heroku main
Your MCP URL: https://your-mcp-server.herokuapp.com/mcp/
Render
- Connect GitHub repository to Render
- Render auto-detects
render.yamland Dockerfile - Deploys automatically
Your MCP URL: https://your-service.onrender.com/mcp/
Docker
docker build -t mcp-simple-server .
docker run -p 8000:8000 mcp-simple-server
Claude Desktop Integration
Local Server Configuration
{
"mcpServers": {
"simple-server": {
"command": "python",
"args": ["main.py"],
"cwd": "/path/to/mcp-simple-server"
}
}
}
Remote Server Configuration (Recommended)
For remote servers deployed to Railway, Heroku, or Render, use the mcp-remote package:
{
"mcpServers": {
"simple-server-remote": {
"command": "npx",
"args": [
"-y",
"mcp-remote",
"https://your-app.railway.app/mcp/",
"--allow-http",
"--header",
"Accept: application/json, text/event-stream"
]
}
}
}
Key Configuration Notes:
- Use
npxwith the-yflag to auto-installmcp-remote - Include the trailing slash in the URL:
/mcp/ - Add the
--allow-httpflag for HTTP connections - Include the Accept header for proper SSE support
Alternative: Direct Python Proxy (Advanced)
For advanced users or debugging purposes, you can create a custom Python proxy:
{
"mcpServers": {
"simple-server-proxy": {
"command": "python",
"args": ["claude_mcp_proxy.py"],
"cwd": "/path/to/mcp-simple-server"
}
}
}
Note: This requires the claude_mcp_proxy.py script from the repository and is mainly for debugging purposes. Use mcp-remote for production.
Configuration File Locations:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
Test with Claude
After integration, ask Claude:
- "Can you add 42 and 18 for me?"
- "What's 7 times 9?"
- "What tools do you have available?"
Claude will use your MCP server to perform calculations! ๐
Development
Adding New Tools
@mcp.tool()
def subtract(a: float, b: float) -> float:
"""Subtract two numbers"""
return a - b
@mcp.tool()
def divide(a: float, b: float) -> float:
"""Divide two numbers"""
if b == 0:
raise ValueError("Cannot divide by zero")
return a / b
Environment Variables
HOST: Server host (default: 127.0.0.1, use 0.0.0.0 for deployment)PORT: Server port (default: 8000, Railway sets this automatically)
HOST=0.0.0.0 PORT=3000 python main.py
Note: For Railway deployment, FastMCP will automatically bind to 0.0.0.0:$PORT.
Project Structure
mcp-simple-server/
โโโ main.py # MCP server (~25 lines)
โโโ test_server.py # Local server tests (~300 lines)
โโโ test_deployment.py # Remote deployment tests
โโโ test_host_binding.py # Host binding tests
โโโ test_proxy_script.py # Proxy testing script
โโโ test_streamable_app.py # Streamable HTTP tests
โโโ test_tool_verification.py # Tool verification tests
โโโ debug_railway_server.py # Railway debugging utilities
โโโ debug_fastmcp.py # FastMCP debugging utilities
โโโ claude_mcp_proxy.py # Claude Desktop proxy (optional)
โโโ start.sh # Shell startup script
โโโ pyproject.toml # Project configuration
โโโ README.md # This documentation
โโโ uv.lock # Dependency lock file
โโโ .gitignore # Git ignore patterns
โโโ .python-version # Python version specification
โโโ Dockerfile # Docker deployment
โโโ railway.toml # Railway configuration
โโโ Procfile # Heroku configuration
โโโ render.yaml # Render configuration
Architecture
- FastMCP: High-level MCP implementation from Anthropic
- Streamable HTTP: Modern transport with SSE streaming support
- Session Management: Stateful connections with session IDs
- JSON-RPC 2.0: Standard protocol for message exchange
- Protocol 2025-06-18: Latest MCP specification
- Port 8000: Default FastMCP server port (configurable via PORT env var)
Technical Details
Server Implementation
- Framework: FastMCP (official Anthropic library)
- Transport: Streamable HTTP with Server-Sent Events
- Protocol: MCP 2025-06-18 specification
- Dependencies:
httpx>=0.28.1,mcp>=1.9.4
MCP Protocol Flow
- Client sends
initializerequest - Server responds with capabilities and session ID
- Client sends
initializednotification - Normal operations begin (tools/list, tools/call, etc.)
Tool Response Format
Tools return simple Python values (float, int, str) which FastMCP automatically wraps in the proper MCP response format.
Troubleshooting
Server Won't Start
# Check if port is in use
lsof -i :8000
# Try different port
PORT=3000 python main.py
MCP Protocol Errors
# Run automated test
python test_server.py
# Check server logs for detailed errors
Claude Desktop Not Connecting
- Verify JSON configuration syntax - Use a JSON validator
- Check server URL accessibility - Test with
curlor browser - Restart Claude Desktop after config changes
- Ensure proper MCP endpoint path - Use
/mcp/with trailing slash - Use
mcp-remotefor remote servers - Don't usecurlfor remote connections
Test Remote Deployment
Test your deployed server with the provided script:
# Test your deployed server (replace with your URL)
python test_deployment.py your-app.railway.app
# Or with full URL
python test_deployment.py https://your-app.railway.app
This will run the complete MCP protocol test suite against your remote server.
Common Issues
- Wrong endpoint: Use
/mcp/(with trailing slash) - Missing headers: Include all required MCP headers
- Session management: Must send
initializednotification afterinitialize - Remote connections: Use
mcp-remote, notcurlfor Claude Desktop - Port binding: Use
0.0.0.0:$PORTfor deployment, not127.0.0.1
Dependencies
dependencies = [
"httpx>=0.28.1", # HTTP client for testing
"mcp>=1.9.4", # Official Anthropic MCP library
]
The project uses:
- mcp: Official Anthropic MCP Python SDK
- httpx: Modern HTTP client for automated testing
- Python: Requires Python >=3.10
Contributing
- Fork the repository
- Make your changes
- Run tests:
python test_server.py - Test deployment:
python test_deployment.py your-test-url - Ensure all tests pass
- Submit a pull request
License
MIT License
Resources
Related Servers
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers without authentication.
Unreal Engine Code Analyzer
Analyzes Unreal Engine source code to provide context for AI assistants.
Snak
An agent engine for creating powerful and secure AI Agents powered by Starknet.
Local MCP Test
A test server for local MCP development and setup.
MCP Server with GitHub OAuth
A remote MCP server with built-in GitHub OAuth support, designed for deployment on Cloudflare Workers.
Postman API
An MCP server for interacting with the Postman API, requiring an API key.
Advent of Code MCP Server
Interact with the Advent of Code website. Requires a session cookie for authentication.
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers, without authentication.
Contrast MCP Server
Remediate vulnerabilities found by Contrast products using LLM and Coding Agent capabilities.
Devici MCP Server
Manage threat models, components, and security data on the Devici platform.