Assists AI developers with requirement clarification, module design, and technical architecture.
协助AI开发者进行智能化需求分析与架构设计的MCP工具
克隆代码
git clone https://github.com/jiemobasixiangcai/ai-develop-assistant.git
推荐虚拟环境
python -m venv venv
source venv/bin/activate # Unix/Linux/MacOS
venv\Scripts\activate # Windows
安装依赖
pip install -r requirements.txt
配置文件位置
Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
添加配置
{
"mcpServers": {
"ai-develop-assistant": {
"command": "python",
"args": ["path/to/AIDevlopStudy.py"],
"env": {
"MCP_STORAGE_DIR": "./mcp_data"
}
}
}
}
重启Claude Desktop
{
"mcpServers": {
"ai-develop-assistant": {
"command": "uvx",
"args": ["ai-develop-assistant@latest"],
"env": {
"MCP_STORAGE_DIR": "/path/to/your/storage"
}
}
}
}
需求澄清
requirement_clarifier("我要做一个在线教育平台")
需求管理
requirement_manager("目标用户:学生和教师", "项目概述")
查看状态
view_requirements_status()
架构设计
architecture_designer("在线教育平台架构")
导出文档
export_final_document()
requirement_clarifier("描述你的项目想法")
export_final_document()
view_requirements_status
了解进度🎯 现在您拥有了一个真正智能的AI开发助手,它会记住每个细节,引导您完成完整的需求分析!
Create and modify wireframes in the Frame0 app through natural language prompts.
An example of a remote MCP server deployable on Cloudflare Workers without authentication.
A test server that demonstrates all features of the MCP protocol, including prompts, tools, resources, and sampling.
An intelligent codebase search engine that transforms local codebases into a natural language queryable knowledge base.
Bring the full power of BrowserStack’s Test Platform to your AI tools, making testing faster and easier for every developer and tester on your team.
Seamlessly bring real-time production context—logs, metrics, and traces—into your local environment to auto-fix code faster.
GXtract is a MCP server designed to integrate with VS Code and other compatible editors. It provides a suite of tools for interacting with the GroundX platform, enabling you to leverage its powerful document understanding capabilities directly within your development environment.
Interact with your crash reporting and real using monitoring data on your Raygun account
A command-line interface wrapper for the Google Gemini API, enabling interaction with Gemini's Search and Chat tools.
A comprehensive crash course on the Model Context Protocol (MCP), covering everything from basic concepts to building production-ready MCP servers and clients in Python.