Create, manage, and explore your content and content model using natural language in any MCP-compatible AI tool.
Transform your content operations with AI-powered tools for Kontent.ai. Create, manage, and explore your structured content through natural language conversations in your favorite AI-enabled editor.
Kontent.ai MCP Server implements the Model Context Protocol to connect your Kontent.ai projects with AI tools like Claude, Cursor, and VS Code. It enables AI models to understand your content structure and perform operations through natural language instructions.
Before you can use the MCP server, you need:
You can run the Kontent.ai MCP Server with npx:
npx @kontent-ai/mcp-server@latest stdio
npx @kontent-ai/mcp-server@latest sse
The server requires the following environment variables:
Variable | Description | Required |
---|---|---|
KONTENT_API_KEY | Your Kontent.ai Management API key | โ |
KONTENT_ENVIRONMENT_ID | Your environment ID | โ |
PORT | Port for SSE transport (defaults to 3001) | โ |
To run the server with STDIO transport, configure your MCP client with:
{
"kontent-ai-stdio": {
"command": "npx",
"args": ["@kontent-ai/mcp-server@latest", "stdio"],
"env": {
"KONTENT_API_KEY": "<management-api-key>",
"KONTENT_ENVIRONMENT_ID": "<environment-id>"
}
}
}
For SSE transport, first start the server:
npx @kontent-ai/mcp-server@latest sse
With environment variables in a .env
file, or otherwise accessible to the process:
KONTENT_API_KEY=<management-api-key>
KONTENT_ENVIRONMENT_ID=<environment-id>
PORT=3001 # optional, defaults to 3001
Then configure your MCP client:
{
"kontent-ai-sse": {
"url": "http://localhost:3001/sse"
}
}
# Clone the repository
git clone https://github.com/kontent-ai/mcp-server.git
cd mcp-server
# Install dependencies
npm ci
# Build the project
npm run build
# Start the server
npm run start:sse # For SSE transport
npm run start:stdio # For STDIO transport
# Start the server with automatic reloading (no need to build first)
npm run dev:sse # For SSE transport
npm run dev:stdio # For STDIO transport
src/
- Source code
tools/
- MCP tool implementationsclients/
- Kontent.ai API client setupschemas/
- Data validation schemasutils/
- Utility functions
errorHandler.ts
- Standardized error handling for MCP toolsthrowError.ts
- Generic error throwing utilityserver.ts
- Main server setup and tool registrationbin.ts
- Single entry point that handles both transport typesFor debugging, you can use the MCP inspector:
npx @modelcontextprotocol/inspector -e KONTENT_API_KEY=<key> -e KONTENT_ENVIRONMENT_ID=<env-id> node path/to/build/bin.js
Or use the MCP inspector on a running sse server:
npx @modelcontextprotocol/inspector
This provides a web interface for inspecting and testing the available tools.
MIT
Navigate your Aiven projects and interact with the PostgreSQLยฎ, Apache Kafkaยฎ, ClickHouseยฎ and OpenSearchยฎ services
Yunxiao MCP Server provides AI assistants with the ability to interact with the Yunxiao platform.
Query Amazon Bedrock Knowledge Bases using natural language to retrieve relevant information from your data sources.
Get prescriptive CDK advice, explain CDK Nag rules, check suppressions, generate Bedrock Agent schemas, and discover AWS Solutions Constructs patterns.
Core AWS MCP server providing prompt understanding and server management capabilities.
Analyze CDK projects to identify AWS services used and get pricing information from AWS pricing webpages and API.
Query and analyze your Axiom logs, traces, and all other event data in natural language
MCP Server that connects AI agents to Chargebee platform.
Deploy, configure & interrogate your resources on the Cloudflare developer platform (e.g. Workers/KV/R2/D1)
Interact with capabilities of the CRIC Wuye AI platform, an intelligent assistant specifically for the property management industry.