Kontent.ai

Create, manage, and explore your content and content model using natural language in any MCP-compatible AI tool.

Kontent.ai MCP Server

NPM Version Contributors Forks Stargazers Issues MIT License Discord

Transform your content operations with AI-powered tools for Kontent.ai. Create, manage, and explore your structured content through natural language conversations in your favorite AI-enabled editor.

Kontent.ai MCP Server implements the Model Context Protocol to connect your Kontent.ai projects with AI tools like Claude, Cursor, and VS Code. It enables AI models to understand your content structure and perform operations through natural language instructions.

โœจ Key Features

  • ๐Ÿš€ Rapid prototyping: Transform your diagrams into live content models in seconds
  • ๐Ÿ“ˆ Data Visualisation: Visualise your content model in any format you want

Table of Contents

๐Ÿ”Œ Quickstart

๐Ÿ”‘ Prerequisites

Before you can use the MCP server, you need:

  1. A Kontent.ai account - Sign up if you don't have an account.
  2. A project - Create a project to work with.
  3. Management API key - Create a Management API key with appropriate permissions.
  4. Environment ID - Get your environment ID.

๐Ÿ›  Setup Options

You can run the Kontent.ai MCP Server with npx:

STDIO Transport

npx @kontent-ai/mcp-server@latest stdio

SSE Transport

npx @kontent-ai/mcp-server@latest sse

๐Ÿ› ๏ธ Available Tools

Content Type Management

  • get-type-mapi โ€“ Get a specific content type by codename
  • list-content-types-mapi โ€“ List all content types in the environment
  • add-content-type-mapi โ€“ Create a new content type with elements

Content Type Snippet Management

  • get-type-snippet-mapi โ€“ Get a specific content type snippet by codename
  • list-content-type-snippets-mapi โ€“ List all content type snippets
  • add-content-type-snippet-mapi โ€“ Create a new content type snippet

Taxonomy Management

  • get-taxonomy-group-mapi โ€“ Get a specific taxonomy group by codename
  • list-taxonomy-groups-mapi โ€“ List all taxonomy groups
  • add-taxonomy-group-mapi โ€“ Create a new taxonomy group with terms

Content Item Management

  • get-item-mapi โ€“ Get a specific content item by codename
  • get-item-dapi โ€“ Get a content item by codename from Delivery API
  • get-variant-mapi โ€“ Get a language variant of a content item
  • add-content-item-mapi โ€“ Create a new content item (structure only)
  • update-content-item-mapi โ€“ Update an existing content item by codename (name, collection)
  • delete-content-item-mapi โ€“ Delete a content item by codename
  • upsert-language-variant-mapi โ€“ Create or update a language variant with content
  • delete-language-variant-mapi โ€“ Delete a language variant of a content item

Asset Management

  • get-asset-mapi โ€“ Get a specific asset by codename
  • list-assets-mapi โ€“ List all assets in the environment

Language Management

  • list-languages-mapi โ€“ List all languages configured in the environment

โš™๏ธ Configuration

The server requires the following environment variables:

VariableDescriptionRequired
KONTENT_API_KEYYour Kontent.ai Management API keyโœ…
KONTENT_ENVIRONMENT_IDYour environment IDโœ…
PORTPort for SSE transport (defaults to 3001)โŒ

๐Ÿš€ Transport Options

๐Ÿ“Ÿ STDIO Transport

To run the server with STDIO transport, configure your MCP client with:

{
  "kontent-ai-stdio": {
      "command": "npx",
      "args": ["@kontent-ai/mcp-server@latest", "stdio"],
      "env": {
        "KONTENT_API_KEY": "<management-api-key>",
        "KONTENT_ENVIRONMENT_ID": "<environment-id>"
      }
    }
}

๐ŸŒ SSE Transport

For SSE transport, first start the server:

npx @kontent-ai/mcp-server@latest sse

With environment variables in a .env file, or otherwise accessible to the process:

KONTENT_API_KEY=<management-api-key>
KONTENT_ENVIRONMENT_ID=<environment-id>
PORT=3001  # optional, defaults to 3001

Then configure your MCP client:

{
  "kontent-ai-sse": {
    "url": "http://localhost:3001/sse"
  }
}

๐Ÿ’ป Development

๐Ÿ›  Local Installation

# Clone the repository
git clone https://github.com/kontent-ai/mcp-server.git
cd mcp-server

# Install dependencies
npm ci

# Build the project
npm run build

# Start the server
npm run start:sse  # For SSE transport
npm run start:stdio  # For STDIO transport

# Start the server with automatic reloading (no need to build first)
npm run dev:sse  # For SSE transport
npm run dev:stdio  # For STDIO transport

๐Ÿ“‚ Project Structure

  • src/ - Source code
    • tools/ - MCP tool implementations
    • clients/ - Kontent.ai API client setup
    • schemas/ - Data validation schemas
    • utils/ - Utility functions
      • errorHandler.ts - Standardized error handling for MCP tools
      • throwError.ts - Generic error throwing utility
    • server.ts - Main server setup and tool registration
    • bin.ts - Single entry point that handles both transport types

๐Ÿ” Debugging

For debugging, you can use the MCP inspector:

npx @modelcontextprotocol/inspector -e KONTENT_API_KEY=<key> -e KONTENT_ENVIRONMENT_ID=<env-id> node path/to/build/bin.js

Or use the MCP inspector on a running sse server:

npx @modelcontextprotocol/inspector

This provides a web interface for inspecting and testing the available tools.

License

MIT

Related Servers