mcp-airflow-simple
simple mcp server for Airflow 3 (API version 2)
Airflow MCP Server
A Model Context Protocol (MCP) server for Apache Airflow 3 that provides essential tools for DAG management, monitoring, debugging, and connection testing through the Airflow REST API v2.
Quick Start
1. Create '.env' file
cp .env.example .env
2. Install dependencies
pip install -r requirements.txt
it will return a token, copy the token and paste it to the .env file
3. Get the airflow token
make sure your airflow is running and accessible at the configured URL
curl -X POST "{your_ariflow_url}/auth/token" -H "Content-Type: application/json" -d '{"username":"{your_airflow_username}","password":"{your_airflow_password}"}'
Example:
curl -X POST "http://localhost:8080/auth/token" -H "Content-Type: application/json" -d '{"username":"airflow","password":"airflow"}'
4. config the MCP server
{
"mcpServers": {
"airflow": {
"command": "python",
"args": ["c:\\{path_to_your_folder}\\mcp-airflow-simple\\server.py"],
"env": {
"GIT_AUTO_UPDATE": "true"
}
}
}
}
Features
🚀 DAG Management
- List all DAGs with filtering options
- Get tasks within a specific DAG
- Trigger DAG runs with optional configuration
- Clear/retry failed DAG runs
🔍 Monitoring & Status
- Check DAG run history and status
- View task instances for specific runs
- Get aggregate DAG statistics
🐛 Debugging & Logs
- Retrieve task execution logs
- Check DAG import/parsing errors
🔌 Connection Management
- List all Airflow connections
- Get connection details
- Test connection accessibility
🏥 Health Checks
- Monitor Airflow Scheduler, Metadatabase, Triggerer, and DagProcessor status
Installation
-
Clone or navigate to the project directory:
cd c:\Users\ChayasinSaetia\chayasin-laptop\mcp-airflow -
Install dependencies:
pip install -r requirements.txt -
Configure environment variables: Edit the
.envfile with your Airflow instance details:airflow_baseurl=http://localhost:8080 airflow_api_url=http://localhost:8080/api/v2 airflow_username=airflow airflow_password=airflow airflow_jwt_token=your_jwt_token_here
Configuration
The server supports two authentication methods:
- JWT Token (Preferred): Set
airflow_jwt_tokenin.env - Basic Auth (Fallback): Uses
airflow_usernameandairflow_password
The server will automatically use JWT if available, otherwise fall back to basic authentication.
Available MCP Tools
DAG Management
get_dags
List all DAGs in Airflow.
{
"only_active": false,
"limit": 100
}
get_dag_tasks
Get all tasks in a specific DAG.
{
"dag_id": "example_dag"
}
trigger_dag_run
Trigger a new DAG run.
{
"dag_id": "example_dag",
"conf": {"key": "value"},
"logical_date": "2026-01-05T00:00:00Z"
}
clear_dag_run
Clear/retry a DAG run (resets failed tasks).
{
"dag_id": "example_dag",
"dag_run_id": "manual__2026-01-05T00:00:00+00:00",
"dry_run": false
}
set_dag_state
Pause or unpause a DAG.
{
"dag_id": "example_dag",
"is_paused": true
}
Monitoring & Status
get_dag_runs
Get DAG run history with optional state filtering.
{
"dag_id": "example_dag",
"state": "failed",
"limit": 25
}
get_task_instances
Get task instances for a specific DAG run.
{
"dag_id": "example_dag",
"dag_run_id": "manual__2026-01-05T00:00:00+00:00"
}
get_dag_stats
Get aggregate statistics for all DAGs.
{}
Debugging & Logs
get_task_logs
Get execution logs for a specific task instance.
{
"dag_id": "example_dag",
"dag_run_id": "manual__2026-01-05T00:00:00+00:00",
"task_id": "example_task",
"try_number": 1
}
get_import_errors
Get DAG import/parsing errors.
{}
Connection Management
get_connections
List all Airflow connections.
{
"limit": 100
}
get_connection
Get details of a specific connection.
{
"connection_id": "postgres_default"
}
test_connection
Test connection accessibility.
{
"connection_id": "postgres_default"
}
Health Check
check_health
Check Airflow system health (includes Metadatabase, Scheduler, Triggerer, and DagProcessor).
{}
Running the Server
As an MCP Server (Stdio)
The server runs as a stdio-based MCP server:
python server.py
Integration with MCP Clients
To use this server with MCP clients like Claude Desktop, add to your MCP configuration:
Windows (%APPDATA%\Claude\claude_desktop_config.json):
{
"mcpServers": {
"airflow": {
"command": "python",
"args": ["c:\\{path_to_your_folder}\\mcp-airflow\\server.py"],
"env": {
"airflow_api_url": "http://localhost:8080/api/v2",
"airflow_jwt_token": "your_token_here"
}
}
}
}
macOS/Linux (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"airflow": {
"command": "python3",
"args": ["{path_to_your_folder}/mcp-airflow/server.py"]
}
}
}
Troubleshooting
Connection Issues
- Verify Airflow is running and accessible at the configured URL
- Check authentication credentials (JWT token or username/password)
- Ensure the Airflow REST API is enabled
Authentication Errors
- Confirm JWT token is valid and not expired
- Verify username and password are correct
- Check that the user has necessary permissions in Airflow
Tool Errors
- Ensure DAG IDs and run IDs are correct
- Check that the requested resources exist in Airflow
- Review Airflow logs for additional context
API Reference
This MCP server uses the Airflow REST API v2. For detailed API documentation, see:
- Airflow REST API Documentation
- Local OpenAPI spec:
openapi.json
Requirements
- Python 3.8+
- Apache Airflow 3.x with REST API enabled
- Network access to Airflow instance
License
MIT License - feel free to use and modify as needed.
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
CC Token Saver
Use a local LLM for smaller or specialized tasks within Claude to save tokens.
Gemma MCP Client
A client for Google's Gemma-3 model that enables function calling through MCP.
Buildkite
Manage Buildkite pipelines and builds.
Matter AI
Provides advanced code review, implementation planning, and pull request generation using Matter AI.
AppsAI
Build and deploy full-stack Next.js apps with 98 tools for React, AWS, and MongoDB
.NET Types Explorer
Provides detailed type information from .NET projects including assembly exploration, type reflection, and NuGet integration for AI coding agents
Nuanced MCP Server
Provides call graph analysis for LLMs using the nuanced library.
ProjectFlow
A workflow management system for AI-assisted development with MCP support, featuring flexible storage via file system or PostgreSQL.
xcsimctl
Manage Xcode simulators.
Just Prompt
A unified interface for various Large Language Model (LLM) providers, including OpenAI, Anthropic, Google Gemini, Groq, DeepSeek, and Ollama.