Convert city names and locations into latitude and longitude coordinates using the free OpenStreetMap Nominatim API. No API key is required.
A Model Context Protocol (MCP) server that provides latitude/longitude coordinates for cities and locations using the OpenStreetMap Nominatim API.
uvx geocode-mcp
Install the package from PyPI using uvx (recommended):
uvx geocode-mcp
Or install with pip:
pip install geocode-mcp
Add to your MCP client configuration:
{
"mcpServers": {
"geocoding": {
"command": "uvx",
"args": ["geocode-mcp"]
}
}
}
See the config/
directory for specific examples for different tools.
mcp_geocoding_get_coordinates
Get latitude and longitude coordinates for a city or location.
Parameters:
location
(required): City name, address, or location (e.g., "New York", "Paris, France", "123 Main St, Seattle")limit
(optional): Maximum number of results to return (default: 1, max: 10)Example Usage:
Get coordinates for Tokyo, Japan
Find the latitude and longitude of London, UK
What are the coordinates for New York City?
Get coordinates for "1600 Pennsylvania Avenue, Washington DC" with limit 5
Response Format:
{
"query": "Tokyo, Japan",
"results_count": 1,
"coordinates": [
{
"latitude": 35.6762,
"longitude": 139.6503,
"display_name": "Tokyo, Japan",
"place_id": "282885117",
"type": "city",
"class": "place",
"importance": 0.9,
"bounding_box": {
"south": 35.619,
"north": 35.739,
"west": 139.619,
"east": 139.682
}
}
]
}
Copy the configuration from config/cursor-mcp.json
to your Cursor MCP settings.
Copy the configuration from config/vscode-mcp.json
to your VS Code MCP settings.
Copy the configuration from config/claude-desktop.json
to your Claude Desktop config file.
See the config README for detailed setup instructions.
# Clone the repository
git clone https://github.com/X-McKay/geocode-mcp.git
cd geocode-mcp
# Install with development dependencies
pip install -e ".[dev]"
# Run all tests
pytest
# Run with coverage
pytest --cov=src/geocode_mcp --cov-report=html
# Run specific test files
pytest tests/test_geocoding.py -v
pytest tests/test_mcp_server.py -v
# Format code
ruff format
# Lint code
ruff check
# Run all checks
ruff check && ruff format --check
For local development and testing, you can run the server directly:
python -m geocode_mcp.server
Or use the development configuration in your MCP client:
{
"mcpServers": {
"geocoding": {
"command": "python",
"args": ["-m", "geocode_mcp.server"],
"cwd": "/path/to/geocode-mcp",
"env": {
"PYTHONPATH": "/path/to/geocode-mcp/src"
}
}
}
}
geocode-mcp/
āāā src/geocode_mcp/ # Main source code
ā āāā server.py # MCP server implementation
āāā tests/ # Test suite
ā āāā test_geocoding.py # Geocoding functionality tests
ā āāā test_mcp_server.py # MCP server integration tests
ā āāā test_mcp.py # MCP protocol tests
ā āāā test_vscode.py # VS Code integration tests
āāā config/ # Configuration examples
ā āāā cursor-mcp.json # Cursor configuration
ā āāā vscode-mcp.json # VS Code configuration
ā āāā claude-desktop.json # Claude Desktop configuration
ā āāā README.md # Configuration guide
āāā docs/ # Documentation
āāā pyproject.toml # Project configuration
āāā requirements.txt # Production dependencies
āāā requirements-dev.txt # Development dependencies
āāā README.md # This file
async def geocode_location(location: str, limit: int = 1) -> dict[str, Any]:
"""
Geocode a location using OpenStreetMap Nominatim API.
Args:
location: The location to geocode
limit: Maximum number of results (1-10)
Returns:
Dictionary containing query, results_count, and coordinates
"""
The server implements the Model Context Protocol and provides the mcp_geocoding_get_coordinates
tool for use in MCP-compatible applications.
git checkout -b feature/amazing-feature
)pytest
)ruff check && ruff format
)git commit -m 'Add amazing feature'
)git push origin feature/amazing-feature
)See CONTRIBUTING.md for more details.
This project is licensed under the MIT License - see the LICENSE file for details.
make format
make type-check
make check-all
### Testing
```bash
# Run all tests
make test
# Run with coverage
make test-cov
# Run specific test categories
pytest tests/test_geocoding.py -v # Geocoding tests
pytest tests/test_mcp.py -v # MCP server tests
python tests/test_mcp_server.py # Integration tests
python tests/test_vscode.py # VSCode tests
# Install production dependencies
make install
# Install development dependencies
make install-dev
See Cursor Integration Guide for detailed setup instructions.
Run the VSCode integration tests:
python tests/test_vscode.py
async def geocode_location(location: str, limit: int = 1) -> dict[str, Any]:
"""Geocode a location using Nominatim API."""
The server provides the get_coordinates
tool that can be called via the MCP protocol.
make test
make lint
See CONTRIBUTING.md for more details.
This project is licensed under the MIT License - see the LICENSE file for details.
---
## š Quick Setup Instructions
1. **Create Project Folder:**
```bash
mkdir mcp-geocoding-server-python
cd mcp-geocoding-server-python
Copy Files: Copy each file section above into files with the respective names
Install Dependencies:
pip install -r requirements.txt
Run the Server:
python geocoding_server.py
Configure MCP Client: Add to your MCP client (like Claude Desktop) configuration:
{
"mcpServers": {
"geocoding": {
"command": "python",
"args": ["/full/path/to/mcp-geocoding-server-python/geocoding_server.py"]
}
}
}
Performs WHOIS lookups to retrieve domain registration details, including owner, registrar, and expiration dates.
Search for news articles using the Naver News API. Requires Naver News API credentials.
An enhanced MCP server for SearXNG web searching, utilizing a category-aware web-search, web-scraping, and includes a date/time retrieval tool.
A Model Context Protocol (MCP) server providing access to Google Search Console.
Access Australian Pharmaceutical Benefits Scheme data for medicine information, pricing, and availability. Built with Python and FastAPI.
Query your local `mu` mail index for fast, structured mail search from MCP clients.
One API for Search, Crawling, and Sitemaps
Search engine for AI agents (search + extract) powered by Tavily
Search YouTube videos and retrieve their transcripts using the YouTube API.
A zero-configuration job aggregation service that fetches job listings from major recruitment websites.