Google Search Console
A Model Context Protocol (MCP) server providing access to Google Search Console.
Google Search Console MCP Server
A Model Context Protocol (MCP) server providing comprehensive access to Google Search Console data with enhanced analytics capabilities.
Sponsored by
Features
- Enhanced Search Analytics: Retrieve up to 25,000 rows of performance data
- Advanced Filtering: Support for regex patterns and multiple filter operators
- Quick Wins Detection: Automatically identify optimization opportunities
- Rich Dimensions: Query, page, country, device, and search appearance analysis
- Flexible Date Ranges: Customizable reporting periods with historical data access
Prerequisites
- Node.js 18 or later
- Google Cloud Project with Search Console API enabled
- Service Account credentials with Search Console access
Installation
Installing via Smithery
To install Google Search Console for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp-server-gsc --client claude
Manual Installation
npm install mcp-server-gsc
Authentication Setup
To obtain Google Search Console API credentials:
- Visit the Google Cloud Console
- Create a new project or select an existing one
- Enable the API:
- Go to "APIs & Services" > "Library"
- Search for and enable "Search Console API"
- Create credentials:
- Navigate to "APIs & Services" > "Credentials"
- Click "Create Credentials" > "Service Account"
- Fill in the service account details
- Create a new key in JSON format
- The credentials file (.json) will download automatically
- Grant access:
- Open Search Console
- Add the service account email (format: name@project.iam.gserviceaccount.com) as a property administrator
Usage
Claude Desktop Configuration
{
"mcpServers": {
"gsc": {
"command": "npx",
"args": ["-y", "mcp-server-gsc"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
}
}
}
}
Available Tools
search_analytics
Get comprehensive search performance data from Google Search Console with enhanced analytics capabilities.
Required Parameters:
siteUrl: Site URL (format:http://www.example.com/orsc-domain:example.com)startDate: Start date (YYYY-MM-DD)endDate: End date (YYYY-MM-DD)
Optional Parameters:
dimensions: Comma-separated list (query,page,country,device,searchAppearance,date)type: Search type (web,image,video,news,discover,googleNews)aggregationType: Aggregation method (auto,byNewsShowcasePanel,byProperty,byPage)rowLimit: Maximum rows to return (default: 1000, max: 25000)dataState: Data freshness (allorfinal, default:final)
Filter Parameters:
pageFilter: Filter by page URL (supports regex withregex:prefix)queryFilter: Filter by search query (supports regex withregex:prefix)countryFilter: Filter by country ISO 3166-1 alpha-3 code (e.g.,USA,CHN)deviceFilter: Filter by device type (DESKTOP,MOBILE,TABLET)searchAppearanceFilter: Filter by search feature (e.g.,AMP_BLUE_LINK,AMP_TOP_STORIES)filterOperator: Operator for filters (equals,contains,notEquals,notContains,includingRegex,excludingRegex)
Quick Wins Detection:
detectQuickWins: Enable automatic detection of optimization opportunities (default:false)quickWinsConfig: Configuration for quick wins detection:positionRange: Position range to consider (default:[4, 20])minImpressions: Minimum impressions threshold (default:100)minCtr: Minimum CTR percentage (default:1)
Example - Basic Query:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "query,page",
"rowLimit": 5000
}
Example - Advanced Filtering with Regex:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "page,query",
"queryFilter": "regex:(AI|machine learning|ML)",
"filterOperator": "includingRegex",
"deviceFilter": "MOBILE",
"rowLimit": 10000
}
Example - Quick Wins Detection:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "query,page",
"detectQuickWins": true,
"quickWinsConfig": {
"positionRange": [4, 15],
"minImpressions": 500,
"minCtr": 2
}
}
License
MIT
Contributing
Contributions are welcome! Please read our contributing guidelines before submitting pull requests.
Related Servers
Brave-Gemini Research MCP Server
Perform web searches with the Brave Search API and analyze research papers using Google's Gemini model.
Mapbox
Unlock geospatial intelligence through Mapbox APIs like geocoding, POI search, directions, isochrones and more.
Marketaux
Search for market news and financial data by entity, country, industry, or symbol using the Marketaux API.
Docs MCP Server
Creates a personal, always-current knowledge base for AI by indexing documentation from websites, GitHub, npm, PyPI, and local files.
MCP Gemini Grounded Search
A Go-based MCP server providing grounded search functionality using Google's Gemini API.
Gaokao Ranking Query
Query Gaokao (Chinese college entrance exam) rankings within provinces based on score, year, and category.
Google Scholar
Search and access academic papers on Google Scholar.
RagDocs
A server for RAG-based document search and management using Qdrant vector database with Ollama or OpenAI embeddings.
Find BGM
Finds background music for YouTube shorts by analyzing script content and recommending tracks from YouTube Music.
Local Flow
A minimal, local, GPU-accelerated RAG server for document ingestion and querying.