Google Search Console
A Model Context Protocol (MCP) server providing access to Google Search Console.
Google Search Console MCP Server
A Model Context Protocol (MCP) server providing comprehensive access to Google Search Console data with enhanced analytics capabilities.
Sponsored by
Features
- Enhanced Search Analytics: Retrieve up to 25,000 rows of performance data
- Advanced Filtering: Support for regex patterns and multiple filter operators
- Quick Wins Detection: Automatically identify optimization opportunities
- Rich Dimensions: Query, page, country, device, and search appearance analysis
- Flexible Date Ranges: Customizable reporting periods with historical data access
Prerequisites
- Node.js 18 or later
- Google Cloud Project with Search Console API enabled
- Service Account credentials with Search Console access
Installation
Installing via Smithery
To install Google Search Console for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp-server-gsc --client claude
Manual Installation
npm install mcp-server-gsc
Authentication Setup
To obtain Google Search Console API credentials:
- Visit the Google Cloud Console
- Create a new project or select an existing one
- Enable the API:
- Go to "APIs & Services" > "Library"
- Search for and enable "Search Console API"
- Create credentials:
- Navigate to "APIs & Services" > "Credentials"
- Click "Create Credentials" > "Service Account"
- Fill in the service account details
- Create a new key in JSON format
- The credentials file (.json) will download automatically
- Grant access:
- Open Search Console
- Add the service account email (format: name@project.iam.gserviceaccount.com) as a property administrator
Usage
Claude Desktop Configuration
{
"mcpServers": {
"gsc": {
"command": "npx",
"args": ["-y", "mcp-server-gsc"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
}
}
}
}
Available Tools
search_analytics
Get comprehensive search performance data from Google Search Console with enhanced analytics capabilities.
Required Parameters:
siteUrl: Site URL (format:http://www.example.com/orsc-domain:example.com)startDate: Start date (YYYY-MM-DD)endDate: End date (YYYY-MM-DD)
Optional Parameters:
dimensions: Comma-separated list (query,page,country,device,searchAppearance,date)type: Search type (web,image,video,news,discover,googleNews)aggregationType: Aggregation method (auto,byNewsShowcasePanel,byProperty,byPage)rowLimit: Maximum rows to return (default: 1000, max: 25000)dataState: Data freshness (allorfinal, default:final)
Filter Parameters:
pageFilter: Filter by page URL (supports regex withregex:prefix)queryFilter: Filter by search query (supports regex withregex:prefix)countryFilter: Filter by country ISO 3166-1 alpha-3 code (e.g.,USA,CHN)deviceFilter: Filter by device type (DESKTOP,MOBILE,TABLET)searchAppearanceFilter: Filter by search feature (e.g.,AMP_BLUE_LINK,AMP_TOP_STORIES)filterOperator: Operator for filters (equals,contains,notEquals,notContains,includingRegex,excludingRegex)
Quick Wins Detection:
detectQuickWins: Enable automatic detection of optimization opportunities (default:false)quickWinsConfig: Configuration for quick wins detection:positionRange: Position range to consider (default:[4, 20])minImpressions: Minimum impressions threshold (default:100)minCtr: Minimum CTR percentage (default:1)
Example - Basic Query:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "query,page",
"rowLimit": 5000
}
Example - Advanced Filtering with Regex:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "page,query",
"queryFilter": "regex:(AI|machine learning|ML)",
"filterOperator": "includingRegex",
"deviceFilter": "MOBILE",
"rowLimit": 10000
}
Example - Quick Wins Detection:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "query,page",
"detectQuickWins": true,
"quickWinsConfig": {
"positionRange": [4, 15],
"minImpressions": 500,
"minCtr": 2
}
}
License
MIT
Contributing
Contributions are welcome! Please read our contributing guidelines before submitting pull requests.
Related Servers
Deep Research
An agent-based tool for web search and advanced research, including analysis of PDFs, documents, images, and YouTube transcripts.
Releasebot
Releasebot finds and watches release note sources from hundreds of products and companies.
Finviz MCP Server
Provides stock screening and fundamental analysis using Finviz data. Requires a Finviz Elite subscription.
12306-mcp
Search for train tickets on 12306, the official China Railway website.
Nexus
Web search server that integrates Perplexity Sonar models via OpenRouter API for real-time, context-aware search with citations
Yandex Search MCP Server
Perform real-time web searches using the Yandex Search API.
MCP Agent
A lightweight, local MCP server in Python that enables RAG search through AWS Lambda.
Amadeus MCP Server
Search for flight offers using the Amadeus Flight Offers Search API.
Harmonic Search
Search for companies and professionals using the Harmonic.ai API.
Qdrant RAG MCP Server
A semantic search server for codebases using Qdrant, featuring intelligent GitHub issue and project management.