Facilitates software development planning through an interactive and structured approach.
A Model Context Protocol (MCP) server designed to facilitate software development planning through an interactive, structured approach. This tool helps break down complex software projects into manageable tasks, track implementation progress, and maintain detailed development plans.
To install Software Planning Tool for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @NightTrek/Software-planning-mcp --client claude
pnpm install
pnpm run build
~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
):{
"mcpServers": {
"software-planning-tool": {
"command": "node",
"args": [
"/path/to/software-planning-tool/build/index.js"
],
"disabled": false,
"autoApprove": []
}
}
}
Start a new planning session with a specific goal.
{
goal: string // The software development goal to plan
}
Add a new todo item to the current plan.
{
title: string, // Title of the todo item
description: string, // Detailed description
complexity: number, // Complexity score (0-10)
codeExample?: string // Optional code example
}
Retrieve all todos in the current plan.
// No parameters required
Update the completion status of a todo item.
{
todoId: string, // ID of the todo item
isComplete: boolean // New completion status
}
Save the current implementation plan.
{
plan: string // The implementation plan text
}
Remove a todo item from the current plan.
{
todoId: string // ID of the todo item to remove
}
Here's a complete example of using the software planning tool:
await client.callTool("software-planning-tool", "start_planning", {
goal: "Create a React-based dashboard application"
});
const todo = await client.callTool("software-planning-tool", "add_todo", {
title: "Set up project structure",
description: "Initialize React project with necessary dependencies",
complexity: 3,
codeExample: `
npx create-react-app dashboard
cd dashboard
npm install @material-ui/core @material-ui/icons
`
});
await client.callTool("software-planning-tool", "update_todo_status", {
todoId: todo.id,
isComplete: true
});
await client.callTool("software-planning-tool", "save_plan", {
plan: `
# Dashboard Implementation Plan
## Phase 1: Setup (Complexity: 3)
- Initialize React project
- Install dependencies
- Set up routing
## Phase 2: Core Features (Complexity: 5)
- Implement authentication
- Create dashboard layout
- Add data visualization components
`
});
software-planning-tool/
├── src/
│ ├── index.ts # Main server implementation
│ ├── prompts.ts # Planning prompts and templates
│ ├── storage.ts # Data persistence
│ └── types.ts # TypeScript type definitions
├── build/ # Compiled JavaScript
├── package.json
└── tsconfig.json
pnpm run build
Test all features using the MCP inspector:
pnpm run inspector
MIT
Made with ❤️ using the Model Context Protocol
Popular MCP server that enables AI agents to scaffold, build, run and test iOS, macOS, visionOS and watchOS apps or simulators and wired and wireless devices. It has powerful UI-automation capabilities like controlling the simulator, capturing run-time logs, as well as taking screenshots and viewing the accessibility hierarchy.
A backend service providing tools, resources, and prompts for AI models using the Model Context Protocol (MCP).
Aggregates multiple MCP resource servers into a single interface using a JSON configuration file.
A test server that demonstrates all features of the MCP protocol, including prompts, tools, resources, and sampling.
Provides tools for geospatial analysis within Jupyter notebooks.
Generate visualizations from fetched data using the VegaLite format and renderer.
Token-efficient access to OpenAPI/Swagger specs via MCP Resources
A Model Context Protocol (MCP) server for CODESYS V3 programming environments.
An MCP server for the DeepSeek API, providing code review, file management, and account management.
Flag features, manage company data, and control feature access using Bucket.