Generate visualizations from fetched data using the VegaLite format and renderer.
A Model Context Protocol (MCP) server implementation that provides the LLM an interface for visualizing data using Vega-Lite syntax.
The server offers two core tools:
save_data
name
(string): Name of the data table to be saveddata
(array): Array of objects representing the data tablevisualize_data
data_name
(string): Name of the data table to be visualizedvegalite_specification
(string): JSON string representing the Vega-Lite specification--output_type
is set to text
, returns a success message with an additional artifact
key containing the complete Vega-Lite specification with data. If the --output_type
is set to png
, returns a base64 encoded PNG image of the visualization using the MPC ImageContent
container.# Add the server to your claude_desktop_config.json
{
"mcpServers": {
"datavis": {
"command": "uv",
"args": [
"--directory",
"/absolute/path/to/mcp-datavis-server",
"run",
"mcp_server_datavis",
"--output_type",
"png" # or "text"
]
}
}
}
GitLab API, enabling project management
Create crafted UI components inspired by the best 21st.dev design engineers.
ALAPI MCP Tools,Call hundreds of API interfaces via MCP
APIMatic MCP Server is used to validate OpenAPI specifications using APIMatic. The server processes OpenAPI files and returns validation summaries by leveraging APIMatic’s API.
MCP to interface with multiple blockchains, staking, DeFi, swap, bridging, wallet management, DCA, Limit Orders, Coin Lookup, Tracking and more.
Enable AI agents to interact with the Atla API for state-of-the-art LLMJ evaluation.
Get prescriptive CDK advice, explain CDK Nag rules, check suppressions, generate Bedrock Agent schemas, and discover AWS Solutions Constructs patterns.
Query and analyze your Axiom logs, traces, and all other event data in natural language
Bring the full power of BrowserStack’s Test Platform to your AI tools, making testing faster and easier for every developer and tester on your team.
Flag features, manage company data, and control feature access using Bucket