Generate visualizations from fetched data using the VegaLite format and renderer.
A Model Context Protocol (MCP) server implementation that provides the LLM an interface for visualizing data using Vega-Lite syntax.
The server offers two core tools:
save_data
name
(string): Name of the data table to be saveddata
(array): Array of objects representing the data tablevisualize_data
data_name
(string): Name of the data table to be visualizedvegalite_specification
(string): JSON string representing the Vega-Lite specification--output_type
is set to text
, returns a success message with an additional artifact
key containing the complete Vega-Lite specification with data. If the --output_type
is set to png
, returns a base64 encoded PNG image of the visualization using the MPC ImageContent
container.# Add the server to your claude_desktop_config.json
{
"mcpServers": {
"datavis": {
"command": "uv",
"args": [
"--directory",
"/absolute/path/to/mcp-datavis-server",
"run",
"mcp_server_datavis",
"--output_type",
"png" # or "text"
]
}
}
}
Retrieving and analyzing issues from Sentry.io
Create crafted UI components inspired by the best 21st.dev design engineers.
ALAPI MCP Tools,Call hundreds of API interfaces via MCP
APIMatic MCP Server is used to validate OpenAPI specifications using APIMatic. The server processes OpenAPI files and returns validation summaries by leveraging APIMatic’s API.
Flag features, manage company data, and control feature access using Bucket
Enable AI Agents to fix build failures from CircleCI.
Query and analyze your Opik logs, traces, prompts and all other telemtry data from your LLMs in natural language.
Run code in secure sandboxes hosted by E2B
Tool platform by IBM to build, test and deploy tools for any data source
Run Python in a code sandbox.