Snowflake MCP Server
A read-only server for interacting with Snowflake databases, allowing SELECT queries and access to schema context.
Snowflake MCP Server
Slightly altered from https://github.com/isaacwasserman/mcp-snowflake-server
Overview
A Model Context Protocol (MCP) server implementation that provides database interaction with Snowflake. This server enables running SQL queries via tools and exposes data insights and schema context as resources. Does not include the ability to execute write operations, and includes a system prompt.
Components
Resources
-
memo://insights
A continuously updated memo aggregating discovered data insights.
Updated automatically when new insights are appended via theappend_insight
tool. -
context://table/{table_name}
(If prefetch enabled) Per-table schema summaries, including columns and comments, exposed as individual resources.
Tools
The server exposes the following tools:
Query Tools
read_query
ExecuteSELECT
queries to read data from the database.
Input:query
(string): TheSELECT
SQL query to execute
Returns: Query results as array of objects
Schema Tools
-
list_databases
List all databases in the Snowflake instance.
Returns: Array of database names -
list_schemas
List all schemas within a specific database.
Input:database
(string): Name of the database
Returns: Array of schema names
-
list_tables
List all tables within a specific database and schema.
Input:database
(string): Name of the databaseschema
(string): Name of the schema
Returns: Array of table metadata
-
describe_table
View column information for a specific table.
Input:table_name
(string): Fully qualified table name (database.schema.table
)
Returns: Array of column definitions with names, types, nullability, defaults, and comments
Analysis Tools
append_insight
Add new data insights to the memo resource.
Input:insight
(string): Data insight discovered from analysis
Returns: Confirmation of insight addition
Effect: Triggers update ofmemo://insights
resource
Usage with Claude Desktop
Installing via UVX
"mcpServers": {
"snowflake_pip": {
"command": "uvx",
"args": [
"--python=3.12", // Optional: specify Python version <=3.12
"mcp_snowflake_server",
"--account", "your_account",
"--warehouse", "your_warehouse",
"--user", "your_user",
"--password", "your_password",
"--role", "your_role",
"--database", "your_database",
"--schema", "your_schema"
// Optionally: "--log_dir", "/absolute/path/to/logs"
// Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
// Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
]
}
}
Installing Locally
-
Install Claude AI Desktop App
-
Install
uv
:
curl -LsSf https://astral.sh/uv/install.sh | sh
- Create a
.env
file with your Snowflake credentials:
SNOWFLAKE_USER="xxx@your_email.com"
SNOWFLAKE_ACCOUNT="xxx"
SNOWFLAKE_ROLE="xxx"
SNOWFLAKE_DATABASE="xxx"
SNOWFLAKE_SCHEMA="xxx"
SNOWFLAKE_WAREHOUSE="xxx"
SNOWFLAKE_PASSWORD="xxx"
# Alternatively, use external browser authentication:
# SNOWFLAKE_AUTHENTICATOR="externalbrowser"
-
[Optional] Modify
runtime_config.json
to set exclusion patterns for databases, schemas, or tables. -
Test locally:
uv --directory /absolute/path/to/mcp_snowflake_server run mcp_snowflake_server
- Add the server to your
claude_desktop_config.json
:
"mcpServers": {
"snowflake_local": {
"command": "/absolute/path/to/uv",
"args": [
"--python=3.12", // Optional
"--directory", "/absolute/path/to/mcp_snowflake_server",
"run", "mcp_snowflake_server"
// Optionally: "--log_dir", "/absolute/path/to/logs"
// Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
// Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
]
}
}
Notes
- The server supports filtering out specific databases, schemas, or tables via exclusion patterns.
- The server exposes additional per-table context resources if prefetching is enabled.
- The
append_insight
tool updates thememo://insights
resource dynamically.
License
MIT
Related Servers
Kollektiv MCP
Build and access a personal LLM knowledge base from your editor or client without any infrastructure setup.
MCP Memory libSQL
A persistent memory system for MCP using libSQL, providing vector search and efficient knowledge storage.
IGDB MCP Server
Access the IGDB (Internet Game Database) API through Model Context Protocol (MCP)
Knowledge Graph Memory Server
Enables memory for Claude using a knowledge graph with fuzzy semantic search and persistent storage.
Cryptocurrency Daemon
An MCP server for interacting with cryptocurrency daemon RPC interfaces.
Apache Doris
MCP Server For Apache Doris, an MPP-based real-time data warehouse.
Crunchbase
Access Crunchbase data for business information and insights. Requires a Crunchbase API key.
ADO.NET MCP Server
A C# MCP server for interacting with databases via ADO.NET, compatible with Virtuoso.
Veeva MCP Server by CData
A read-only MCP server by CData that enables LLMs to query live data from Veeva.
MCP PGVector Server
Provides semantic search capabilities for PostgreSQL databases using the pgvector extension, with support for multiple embedding providers.