MCPSwift

A Swift framework for building Model Context Protocol (MCP) servers with a simplified API.

AgentKit

A Swift framework for building AI agents with Amazon Bedrock and Model Context Protocol (MCP) support. AgentKit simplifies creating conversational AI agents that can use tools and integrate with MCP servers.

Overview

AgentKit provides a high-level API for building AI agents that can:

  • Have conversations using Amazon Bedrock models
  • Use local tools to perform actions
  • Connect to remote MCP servers for extended capabilities
  • Handle authentication and configuration seamlessly

Requirements

  • macOS 15 or later
  • Swift 6.2 or later
  • AWS credentials configured

Installation

Add AgentKit to your Swift package:

dependencies: [
    .package(url: "https://github.com/sebsto/AgentKit", from: "1.0.0")
]

1. Simple Agent

Create a basic conversational agent with minimal setup:

import AgentKit

// Simple one-liner - agent responds to stdout
try await Agent("Tell me about Swift 6")

// Two-step approach
let agent = try await Agent()
try await agent("Tell me about Swift 6")

// With custom authentication and region
try await Agent(
    "Tell me about Swift 6", 
    auth: .sso("my-profile"), 
    region: .eucentral1
)

// With callback for custom output handling
let agent = try await Agent()
try await agent("Tell me about Swift 6") { event in
    print(event, terminator: "")
}

// Streaming approach
let agent = try await Agent()
for try await event in agent.streamAsync("Tell me about Swift 6") {
    switch event {
    case .text(let text):
        print(text, terminator: "")
    default:
        break
    }
}

2. Tools

Create tools that agents can use to perform specific actions. Tools are defined using the @Tool macro.

Important: Swift DocC comments on the handle function parameters and @SchemaDefinition struct properties are crucial - they become the tool descriptions that AI models use to understand how to invoke your tools correctly.

Simple String Tool

import AgentKit

@Tool(
    name: "weather",
    description: "Get detailed weather information for a city."
)
struct WeatherTool {
    /// Get weather information for a specific city
    /// - Parameter input: The city name to get the weather for
    func handle(input city: String) async throws -> String {
        let weatherURL = "http://wttr.in/\(city)?format=j1"
        let url = URL(string: weatherURL)!
        let (data, _) = try await URLSession.shared.data(from: url)
        return String(decoding: data, as: UTF8.self)
    }
}

Complex Structured Tool

import AgentKit

@SchemaDefinition
struct CalculatorInput: Codable {
    /// The first operand of the operation
    let a: Double
    /// The second operand of the operation
    let b: Double
    /// The arithmetic operation: "add", "subtract", "multiply", "divide"
    let operation: String
}

@Tool(
    name: "calculator",
    description: "Performs basic arithmetic operations",
    schema: CalculatorInput.self
)
struct CalculatorTool {
    func handle(input: CalculatorInput) async throws -> Double {
        switch input.operation {
        case "add":
            return input.a + input.b
        case "subtract":
            return input.a - input.b
        case "multiply":
            return input.a * input.b
        case "divide":
            guard input.b != 0 else {
                throw MCPServerError.invalidParam("b", "Cannot divide by zero")
            }
            return input.a / input.b
        default:
            throw MCPServerError.invalidParam("operation", "Unknown operation: \(input.operation)")
        }
    }
}

Currency Exchange Tool

import AgentKit

@SchemaDefinition
struct FXRatesInput: Codable {
    /// The source currency code (e.g., USD, EUR, GBP)
    let sourceCurrency: String
    /// The target currency code (e.g., USD, EUR, GBP)
    let targetCurrency: String
}

@Tool(
    name: "foreign_exchange_rates",
    description: "Get current foreign exchange rates between two currencies",
    schema: FXRatesInput.self
)
struct FXRateTool {
    func handle(input: FXRatesInput) async throws -> String {
        let fxURL = "https://hexarate.paikama.co/api/rates/latest/\(input.sourceCurrency)?target=\(input.targetCurrency)"
        let url = URL(string: fxURL)!
        let (data, _) = try await URLSession.shared.data(from: url)
        return String(decoding: data, as: UTF8.self)
    }
}

3. Agent + Tools

Combine agents with local tools for enhanced capabilities:

import AgentKit

// Create agent with multiple tools
let agent = try await Agent(tools: [
    WeatherTool(), 
    FXRateTool(), 
    CalculatorTool()
])

// Use the tools through natural conversation
try await agent("What is the weather in Paris today?")
try await agent("How much is 100 USD in EUR?")
try await agent("What is 15 * 23?")

4. Exposing Tools as MCP Server

Share your tools with other applications by creating MCP servers:

STDIO Server

import AgentKit

@main
struct MyMCPServer {
    static func main() async throws {
        try await MCPServer.withMCPServer(
            name: "MyToolServer",
            version: "1.0.0",
            transport: .stdio,
            tools: [
                WeatherTool(),
                CalculatorTool(),
                FXRateTool()
            ]
        ) { server in
            try await server.run()
        }
    }
}

HTTP Server

import AgentKit

@main
struct MyHTTPServer {
    static func main() async throws {
        try await MCPServer.withMCPServer(
            name: "MyToolServer",
            version: "1.0.0",
            transport: .http(port: 8080),
            tools: [
                WeatherTool(),
                CalculatorTool(),
                FXRateTool()
            ]
        ) { server in
            try await server.run()
        }
    }
}

Server with Prompts

import AgentKit

let weatherPrompt = try! MCPPrompt.build { builder in
    builder.name = "current-weather"
    builder.description = "Get current weather for a city"
    builder.text("What is the weather today in {city}?")
    builder.parameter("city", description: "The name of the city")
}

@main
struct MyServerWithPrompts {
    static func main() async throws {
        try await MCPServer.withMCPServer(
            name: "MyToolServer",
            version: "1.0.0",
            transport: .stdio,
            tools: [WeatherTool()],
            prompts: [weatherPrompt]
        ) { server in
            try await server.run()
        }
    }
}

5. Agent + MCP Servers

Connect agents to remote MCP servers for extended capabilities:

Using Configuration File

Create a JSON configuration file (mcp-config.json):

{
    "mcpServers": {
        "weather-server": {
            "command": "./weather-server",
            "args": [],
            "disabled": false,
            "timeout": 60000
        },
        "calculator-server": {
            "url": "http://127.0.0.1:8080/mcp",
            "disabled": false,
            "timeout": 60000
        }
    }
}

Use the configuration file:

import AgentKit

let configFile = URL(fileURLWithPath: "./mcp-config.json")
let agent = try await Agent(mcpConfigFile: configFile)

print("Agent has \(agent.tools.count) tools available")
agent.tools.forEach { tool in
    print("- \(tool.toolName)")
}

try await agent("What is the weather in London and what is 25 * 4?")

Using MCPServerConfiguration

import AgentKit

let config = MCPServerConfiguration()
config.addServer(
    name: "weather-server",
    command: "./weather-server",
    args: []
)
config.addServer(
    name: "calculator-server", 
    url: "http://127.0.0.1:8080/mcp"
)

let agent = try await Agent(mcpConfig: config)
try await agent("Get weather for Berlin and calculate 100 * 1.2")

Using MCPClient Directly

import AgentKit

// Create individual MCP clients
let weatherClient = try await MCPClient(
    command: "./weather-server",
    args: [],
    name: "weather-server"
)

let calculatorClient = try await MCPClient(
    url: "http://127.0.0.1:8080/mcp",
    name: "calculator-server"
)

// Use clients with agent
let agent = try await Agent(mcpTools: [weatherClient, calculatorClient])
try await agent("What's the weather in Tokyo and what is 50 divided by 2?")

Mixed Local and Remote Tools

import AgentKit

let agent = try await Agent(
    tools: [WeatherTool()],  // Local tools
    mcpConfigFile: URL(fileURLWithPath: "./remote-servers.json")  // Remote tools
)

try await agent("Compare weather in Paris with currency rates USD to EUR")

6. Authentication

AgentKit supports multiple AWS authentication methods:

Default Credential Chain

let agent = try await Agent(auth: .default)

AWS SSO

let agent = try await Agent(auth: .sso("my-sso-profile"))
// or with default profile
let agent = try await Agent(auth: .sso(nil))

Named Profile

let agent = try await Agent(auth: .profile("my-aws-profile"))

Temporary Credentials

let agent = try await Agent(auth: .tempCredentials("/path/to/credentials.json"))

The temporary credentials file should contain:

{
    "accessKeyId": "AKIA...",
    "secretAccessKey": "...",
    "sessionToken": "...",
    "expiration": "2024-01-01T00:00:00Z"
}

Custom Region

let agent = try await Agent(
    auth: .sso("my-profile"),
    region: .eucentral1
)

Advanced Configuration

Custom Models

let agent = try await Agent(
    model: .claude_haiku_v3,
    auth: .sso("my-profile")
)

System Prompts

let agent = try await Agent(
    systemPrompt: "You are a helpful assistant specialized in weather and finance.",
    tools: [WeatherTool(), FXRateTool()]
)

Custom Logging

import Logging

var logger = Logger(label: "MyAgent")
logger.logLevel = .debug

let agent = try await Agent(
    tools: [WeatherTool()],
    logger: logger
)

Examples

The Example directory contains complete working examples:

  • AgentClient: Demonstrates various agent usage patterns
  • MCPServer: Shows how to create MCP servers with tools
  • MCPClient: Illustrates connecting to remote MCP servers

Build and run examples:

cd Example
swift build
.build/debug/AgentClient
.build/debug/MCPServer
.build/debug/MCPClient

License

This project is licensed under the MIT License - see the LICENSE file for details.

Related Servers