MCPSwift
A Swift framework for building Model Context Protocol (MCP) servers with a simplified API.
AgentKit
A Swift framework for building AI agents with Amazon Bedrock and Model Context Protocol (MCP) support. AgentKit simplifies creating conversational AI agents that can use tools and integrate with MCP servers.
Overview
AgentKit provides a high-level API for building AI agents that can:
- Have conversations using Amazon Bedrock models
- Use local tools to perform actions
- Connect to remote MCP servers for extended capabilities
- Handle authentication and configuration seamlessly
Requirements
- macOS 15 or later
- Swift 6.2 or later
- AWS credentials configured
Installation
Add AgentKit to your Swift package:
dependencies: [
.package(url: "https://github.com/sebsto/AgentKit", from: "1.0.0")
]
1. Simple Agent
Create a basic conversational agent with minimal setup:
import AgentKit
// Simple one-liner - agent responds to stdout
try await Agent("Tell me about Swift 6")
// Two-step approach
let agent = try await Agent()
try await agent("Tell me about Swift 6")
// With custom authentication and region
try await Agent(
"Tell me about Swift 6",
auth: .sso("my-profile"),
region: .eucentral1
)
// With callback for custom output handling
let agent = try await Agent()
try await agent("Tell me about Swift 6") { event in
print(event, terminator: "")
}
// Streaming approach
let agent = try await Agent()
for try await event in agent.streamAsync("Tell me about Swift 6") {
switch event {
case .text(let text):
print(text, terminator: "")
default:
break
}
}
2. Tools
Create tools that agents can use to perform specific actions. Tools are defined using the @Tool
macro.
Important: Swift DocC comments on the handle
function parameters and @SchemaDefinition
struct properties are crucial - they become the tool descriptions that AI models use to understand how to invoke your tools correctly.
Simple String Tool
import AgentKit
@Tool(
name: "weather",
description: "Get detailed weather information for a city."
)
struct WeatherTool {
/// Get weather information for a specific city
/// - Parameter input: The city name to get the weather for
func handle(input city: String) async throws -> String {
let weatherURL = "http://wttr.in/\(city)?format=j1"
let url = URL(string: weatherURL)!
let (data, _) = try await URLSession.shared.data(from: url)
return String(decoding: data, as: UTF8.self)
}
}
Complex Structured Tool
import AgentKit
@SchemaDefinition
struct CalculatorInput: Codable {
/// The first operand of the operation
let a: Double
/// The second operand of the operation
let b: Double
/// The arithmetic operation: "add", "subtract", "multiply", "divide"
let operation: String
}
@Tool(
name: "calculator",
description: "Performs basic arithmetic operations",
schema: CalculatorInput.self
)
struct CalculatorTool {
func handle(input: CalculatorInput) async throws -> Double {
switch input.operation {
case "add":
return input.a + input.b
case "subtract":
return input.a - input.b
case "multiply":
return input.a * input.b
case "divide":
guard input.b != 0 else {
throw MCPServerError.invalidParam("b", "Cannot divide by zero")
}
return input.a / input.b
default:
throw MCPServerError.invalidParam("operation", "Unknown operation: \(input.operation)")
}
}
}
Currency Exchange Tool
import AgentKit
@SchemaDefinition
struct FXRatesInput: Codable {
/// The source currency code (e.g., USD, EUR, GBP)
let sourceCurrency: String
/// The target currency code (e.g., USD, EUR, GBP)
let targetCurrency: String
}
@Tool(
name: "foreign_exchange_rates",
description: "Get current foreign exchange rates between two currencies",
schema: FXRatesInput.self
)
struct FXRateTool {
func handle(input: FXRatesInput) async throws -> String {
let fxURL = "https://hexarate.paikama.co/api/rates/latest/\(input.sourceCurrency)?target=\(input.targetCurrency)"
let url = URL(string: fxURL)!
let (data, _) = try await URLSession.shared.data(from: url)
return String(decoding: data, as: UTF8.self)
}
}
3. Agent + Tools
Combine agents with local tools for enhanced capabilities:
import AgentKit
// Create agent with multiple tools
let agent = try await Agent(tools: [
WeatherTool(),
FXRateTool(),
CalculatorTool()
])
// Use the tools through natural conversation
try await agent("What is the weather in Paris today?")
try await agent("How much is 100 USD in EUR?")
try await agent("What is 15 * 23?")
4. Exposing Tools as MCP Server
Share your tools with other applications by creating MCP servers:
STDIO Server
import AgentKit
@main
struct MyMCPServer {
static func main() async throws {
try await MCPServer.withMCPServer(
name: "MyToolServer",
version: "1.0.0",
transport: .stdio,
tools: [
WeatherTool(),
CalculatorTool(),
FXRateTool()
]
) { server in
try await server.run()
}
}
}
HTTP Server
import AgentKit
@main
struct MyHTTPServer {
static func main() async throws {
try await MCPServer.withMCPServer(
name: "MyToolServer",
version: "1.0.0",
transport: .http(port: 8080),
tools: [
WeatherTool(),
CalculatorTool(),
FXRateTool()
]
) { server in
try await server.run()
}
}
}
Server with Prompts
import AgentKit
let weatherPrompt = try! MCPPrompt.build { builder in
builder.name = "current-weather"
builder.description = "Get current weather for a city"
builder.text("What is the weather today in {city}?")
builder.parameter("city", description: "The name of the city")
}
@main
struct MyServerWithPrompts {
static func main() async throws {
try await MCPServer.withMCPServer(
name: "MyToolServer",
version: "1.0.0",
transport: .stdio,
tools: [WeatherTool()],
prompts: [weatherPrompt]
) { server in
try await server.run()
}
}
}
5. Agent + MCP Servers
Connect agents to remote MCP servers for extended capabilities:
Using Configuration File
Create a JSON configuration file (mcp-config.json
):
{
"mcpServers": {
"weather-server": {
"command": "./weather-server",
"args": [],
"disabled": false,
"timeout": 60000
},
"calculator-server": {
"url": "http://127.0.0.1:8080/mcp",
"disabled": false,
"timeout": 60000
}
}
}
Use the configuration file:
import AgentKit
let configFile = URL(fileURLWithPath: "./mcp-config.json")
let agent = try await Agent(mcpConfigFile: configFile)
print("Agent has \(agent.tools.count) tools available")
agent.tools.forEach { tool in
print("- \(tool.toolName)")
}
try await agent("What is the weather in London and what is 25 * 4?")
Using MCPServerConfiguration
import AgentKit
let config = MCPServerConfiguration()
config.addServer(
name: "weather-server",
command: "./weather-server",
args: []
)
config.addServer(
name: "calculator-server",
url: "http://127.0.0.1:8080/mcp"
)
let agent = try await Agent(mcpConfig: config)
try await agent("Get weather for Berlin and calculate 100 * 1.2")
Using MCPClient Directly
import AgentKit
// Create individual MCP clients
let weatherClient = try await MCPClient(
command: "./weather-server",
args: [],
name: "weather-server"
)
let calculatorClient = try await MCPClient(
url: "http://127.0.0.1:8080/mcp",
name: "calculator-server"
)
// Use clients with agent
let agent = try await Agent(mcpTools: [weatherClient, calculatorClient])
try await agent("What's the weather in Tokyo and what is 50 divided by 2?")
Mixed Local and Remote Tools
import AgentKit
let agent = try await Agent(
tools: [WeatherTool()], // Local tools
mcpConfigFile: URL(fileURLWithPath: "./remote-servers.json") // Remote tools
)
try await agent("Compare weather in Paris with currency rates USD to EUR")
6. Authentication
AgentKit supports multiple AWS authentication methods:
Default Credential Chain
let agent = try await Agent(auth: .default)
AWS SSO
let agent = try await Agent(auth: .sso("my-sso-profile"))
// or with default profile
let agent = try await Agent(auth: .sso(nil))
Named Profile
let agent = try await Agent(auth: .profile("my-aws-profile"))
Temporary Credentials
let agent = try await Agent(auth: .tempCredentials("/path/to/credentials.json"))
The temporary credentials file should contain:
{
"accessKeyId": "AKIA...",
"secretAccessKey": "...",
"sessionToken": "...",
"expiration": "2024-01-01T00:00:00Z"
}
Custom Region
let agent = try await Agent(
auth: .sso("my-profile"),
region: .eucentral1
)
Advanced Configuration
Custom Models
let agent = try await Agent(
model: .claude_haiku_v3,
auth: .sso("my-profile")
)
System Prompts
let agent = try await Agent(
systemPrompt: "You are a helpful assistant specialized in weather and finance.",
tools: [WeatherTool(), FXRateTool()]
)
Custom Logging
import Logging
var logger = Logger(label: "MyAgent")
logger.logLevel = .debug
let agent = try await Agent(
tools: [WeatherTool()],
logger: logger
)
Examples
The Example
directory contains complete working examples:
- AgentClient: Demonstrates various agent usage patterns
- MCPServer: Shows how to create MCP servers with tools
- MCPClient: Illustrates connecting to remote MCP servers
Build and run examples:
cd Example
swift build
.build/debug/AgentClient
.build/debug/MCPServer
.build/debug/MCPClient
License
This project is licensed under the MIT License - see the LICENSE file for details.
Related Servers
PixelLab
Generate and manipulate pixel art using the PixelLab API.
Android MCP Server
Control Android devices via the Android Debug Bridge (ADB).
AgentPM
A planning and orchestration system for AI-driven software development.
Ghidra MCP Server
Exposes binary analysis data from Ghidra, including functions and pseudocode, to LLMs.
OpenAI GPT Image
Generate and edit images using OpenAI's GPT-4o and DALL-E APIs with advanced prompt control.
Dive AI Agent
An open-source desktop application for hosting MCP servers that integrates with function-calling LLMs.
ExMCP Test Server
An Elixir-based MCP server for testing and experimenting with the Model Context Protocol.
Commands
An MCP server to run arbitrary commands on the local machine.
Markdown Sidecar MCP Server
Serve and access markdown documentation for locally installed NPM, Go, or PyPi packages.
Base64 Encode/Decode
A simple and efficient MCP server for Base64 encoding and decoding of text and images.