LLMling
An MCP server with an LLMling backend that uses YAML files to configure LLM applications.
mcp-server-llmling
LLMling Server Manual
Overview
mcp-server-llmling is a server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications.
LLMLing, the backend, provides a YAML-based configuration system for LLM applications. It allows to set up custom MCP servers serving content defined in YAML files.
- Static Declaration: Define your LLM's environment in YAML - no code required
- MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
- Component Types:
- Resources: Content providers (files, text, CLI output, etc.)
- Prompts: Message templates with arguments
- Tools: Python functions callable by the LLM
The YAML configuration creates a complete environment that provides the LLM with:
- Access to content via resources
- Structured prompts for consistent interaction
- Tools for extending capabilities
Key Features
1. Resource Management
- Load and manage different types of resources:
- Text files (
PathResource) - Raw text content (
TextResource) - CLI command output (
CLIResource) - Python source code (
SourceResource) - Python callable results (
CallableResource) - Images (
ImageResource)
- Text files (
- Support for resource watching/hot-reload
- Resource processing pipelines
- URI-based resource access
2. Tool System
- Register and execute Python functions as LLM tools
- Support for OpenAPI-based tools
- Entry point-based tool discovery
- Tool validation and parameter checking
- Structured tool responses
3. Prompt Management
- Static prompts with template support
- Dynamic prompts from Python functions
- File-based prompts
- Prompt argument validation
- Completion suggestions for prompt arguments
4. Multiple Transport Options
- Stdio-based communication (default)
- Server-Sent Events (SSE) / Streamable HTTP for web clients
- Support for custom transport implementations
Usage
With Zed Editor
Add LLMLing as a context server in your settings.json:
{
"context_servers": {
"llmling": {
"command": {
"env": {},
"label": "llmling",
"path": "uvx",
"args": [
"mcp-server-llmling",
"start",
"path/to/your/config.yml"
]
},
"settings": {}
}
}
}
With Claude Desktop
Configure LLMLing in your claude_desktop_config.json:
{
"mcpServers": {
"llmling": {
"command": "uvx",
"args": [
"mcp-server-llmling",
"start",
"path/to/your/config.yml"
],
"env": {}
}
}
}
Manual Server Start
Start the server directly from command line:
# Latest version
uvx mcp-server-llmling@latest
1. Programmatic usage
from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer
async def main() -> None:
async with RuntimeConfig.open(config) as runtime:
server = LLMLingServer(runtime, enable_injection=True)
await server.start()
asyncio.run(main())
2. Using Custom Transport
from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer
async def main() -> None:
async with RuntimeConfig.open(config) as runtime:
server = LLMLingServer(
config,
transport="sse",
transport_options={
"host": "localhost",
"port": 3001,
"cors_origins": ["http://localhost:3000"]
}
)
await server.start()
asyncio.run(main())
3. Resource Configuration
resources:
python_code:
type: path
path: "./src/**/*.py"
watch:
enabled: true
patterns:
- "*.py"
- "!**/__pycache__/**"
api_docs:
type: text
content: |
API Documentation
================
...
4. Tool Configuration
tools:
analyze_code:
import_path: "mymodule.tools.analyze_code"
description: "Analyze Python code structure"
toolsets:
api:
type: openapi
spec: "https://api.example.com/openapi.json"
[!TIP] For OpenAPI schemas, you can install Redocly CLI to bundle and resolve OpenAPI specifications before using them with LLMLing. This helps ensure your schema references are properly resolved and the specification is correctly formatted. If redocly is installed, it will be used automatically.
Server Configuration
The server is configured through a YAML file with the following sections:
global_settings:
timeout: 30
max_retries: 3
log_level: "INFO"
requirements: []
pip_index_url: null
extra_paths: []
resources:
# Resource definitions...
tools:
# Tool definitions...
toolsets:
# Toolset definitions...
prompts:
# Prompt definitions...
MCP Protocol
The server implements the MCP protocol which supports:
-
Resource Operations
- List available resources
- Read resource content
- Watch for resource changes
-
Tool Operations
- List available tools
- Execute tools with parameters
- Get tool schemas
-
Prompt Operations
- List available prompts
- Get formatted prompts
- Get completions for prompt arguments
-
Notifications
- Resource changes
- Tool/prompt list updates
- Progress updates
- Log messages
Related Servers
MCP DevTools
A development tools server for Git management, file operations, AI-assisted editing, and terminal execution, integrable with AI assistants and code editors.
Matter AI
Provides advanced code review, implementation planning, and pull request generation using Matter AI.
GhidraMCP
An embedded MCP server for Ghidra, exposing program data and reverse engineering functionalities.
MCP Server Boilerplate
A TypeScript boilerplate for building MCP servers with streamable HTTP and OAuth proxy support.
Alertmanager
A Model Context Protocol (MCP) server that enables AI assistants to integrate with Prometheus Alertmanager
My MCP Server
A remote MCP server deployable on Cloudflare Workers without authentication.
Second Opinion
Review commits and codebases using external LLMs like OpenAI, Google Gemini, and Mistral.
GraphQL Schema
Exposes GraphQL schema information to LLMs, allowing them to explore and understand the schema using specialized tools.
Interactive Feedback MCP
An MCP server for AI-assisted development tools like Cursor and Claude, supporting interactive feedback workflows with AI.
Vercel AI SDK MCP Server Project
An MCP server for the Vercel AI SDK, enabling integrations with Figma and 21st.dev Magic.