Simple unofficial MCP server to track time via Toggl API
A Model Context Protocol (MCP) server that provides tools for interacting with Toggl time tracking.
start_tracking
title
(string): Title/description of the task to trackworkspace_id
(integer): Workspace ID (optional, uses default if not provided)project_id
(integer): Project ID (optional)tags
(string[]): List of tags (optional)stop_tracking
list_workspaces
show_current_time_entry
This server uses the Toggl Track API v9. The following endpoints are utilized:
GET /me
- Get user informationGET /workspaces
- List workspacesGET /me/time_entries/current
- Get current running time entryPOST /workspaces/{workspace_id}/time_entries
- Start time trackingPATCH /workspaces/{workspace_id}/time_entries/{time_entry_id}/stop
- Stop time trackinguv
:
cd lazy-toggl-mcp
uv sync
Add the following configuration to your MCP settings file:
{
"mcpServers": {
"lazy-toggl-mcp": {
"autoApprove": [],
"disabled": false,
"timeout": 60,
"type": "stdio",
"transportType": "stdio",
"command": "uv",
"args": [
"run",
"--directory",
"/path/to/lazy-toggl-mcp",
"python",
"server.py"
],
"env": {
"TOGGL_API_TOKEN": "your-actual-api-token-here"
}
}
}
}
Important: Replace /path/to/lazy-toggl-mcp
with the actual path to this project and your-actual-api-token-here
with your real Toggl API token.
lazy-toggl-mcp/
├── src/
│ └── toggl_server/
│ ├── __init__.py # Package initialization
│ ├── main.py # MCP server implementation (new structure)
│ ├── models.py # Data models and type definitions
│ ├── toggl_api.py # Toggl API client
│ └── utils.py # Utility functions
├── main.py # CLI interface for testing
├── server.py # Main MCP server entry point
├── pyproject.toml # Project configuration and dependencies
├── README.md # This file
├── uv.lock # Dependency lock file
├── .gitignore # Git ignore patterns
└── .python-version # Python version specification
MIT License - feel free to modify and use as needed.
Manages work memories and shares context between AI tools using a local SQLite database.
Time and timezone conversion capabilities
An MCP server that uses Google's Gemini 1.5 Pro to generate concise summaries of various content types.
Access and analyze Fathom Analytics data and reports
Automate your local browser
An intelligent tutoring server that uses GitHub documentation repositories to provide structured educational prompts and tools.
A laundry planning assistant that uses preferences and real-time weather forecasts.
A tool for systematic problem-solving based on Claude Shannon's methodology, breaking down complex problems into structured thoughts.
A server for managing gatherings and sharing expenses.
AnkiConnect MCP server for interacting with Anki via AnkiConnect.