MCP Educational Tutor
An intelligent tutoring server that uses GitHub documentation repositories to provide structured educational prompts and tools.
Educational Tutor
An experimental system that transforms documentation repositories into interactive educational content using AI and the Model Context Protocol (MCP).
š Overview
This project consists of two main components:
- š Course Content Agent - Generates structured learning courses from documentation repositories
- š§ MCP Educational Server - Provides standardized access to course content via MCP protocol
šļø Architecture
Documentation Repository ā Course Content Agent ā Structured Courses ā MCP Server ā AI Tutors
The system processes documentation, creates educational content, and exposes it through standardized tools for AI tutoring applications.
š Project Structure
tutor/
āāā course_content_agent/ # AI-powered course generation from docs
ā āāā main.py # CourseBuilder orchestration
ā āāā modules.py # Core processing logic
ā āāā models.py # Pydantic data models
ā āāā signatures.py # DSPy LLM signatures
ā āāā about.md # š Detailed documentation
āāā mcp_server/ # MCP protocol server for course access
ā āāā main.py # MCP server startup
ā āāā tools.py # Course interaction tools
ā āāā course_management.py # Content processing
ā āāā about.md # š Detailed documentation
āāā course_output/ # Generated course content
āāā nbs/ # Jupyter notebooks for development
āāā pyproject.toml # Project configuration
š Quick Start
1. Install Dependencies and Create Virtual Environment
This project uses uv for fast Python package management.
# Create a virtual environment
python -m uv venv
# Install dependencies in editable mode
.venv/bin/uv pip install -e .
2. Generate Courses from Documentation
# Generate courses from a repository
.venv/bin/uv run python course_content_agent/test.py
Customize for Your Repository: Edit course_content_agent/test.py to change:
- Repository URL (currently uses MCP docs)
- Include/exclude specific folders
- Output directory and caching settings
3. Start MCP Server
# Serve generated courses via MCP protocol
.venv/bin/uv run python -m mcp_server.main
# Or customize course directory
COURSE_DIR=your_course_output .venv/bin/uv run python -m mcp_server.main
4. Test MCP Integration
# Test server capabilities
.venv/bin/uv run python mcp_server/stdio_client.py
š Detailed Documentation
For comprehensive information about each component:
-
Course Content Agent: See
course_content_agent/about.md- AI-powered course generation
- DSPy signatures and multiprocessing
- Document analysis and learning path creation
-
MCP Educational Server: See
mcp_server/about.md- MCP protocol implementation
- Course interaction tools
- Integration with AI assistants
š MCP Integration with Cursor
To use the educational tutor MCP server with Cursor, create a .cursor/mcp.json file in your project root:
{
"mcpServers": {
"educational-tutor": {
"command": "/path/to/tutor/project/.venv/bin/uv",
"args": [
"--directory",
"/path/to/tutor/project",
"run",
"mcp_server/main.py"
],
"env": {
"COURSE_DIR": "/path/to/tutor/project/course_output"
}
}
}
}
Setup Steps:
- Create a virtual environment:
python -m uv venv - Install dependencies:
.venv/bin/uv pip install -e . - Update the
commandpath and the path inargsto your project directory. - Restart Cursor or reload the window.
- Use
@educational-tutorin Cursor chat to access course tools.
š§ Development Status
Current Status: ā Functional MVP
- Course generation from documentation repositories
- MCP server for standardized content access
- Multi-complexity course creation (beginner/intermediate/advanced)
Future Enhancements:
- Support for diverse content sources (websites, videos)
- Advanced search and recommendation systems
- Integration with popular AI platforms
š ļø Technology Stack
- AI Framework: DSPy for LLM orchestration
- Content Processing: Multiprocessing for performance
- Protocol: Model Context Protocol (MCP) for standardization
- Models: Gemini 2.5 Flash for content generation
- Data: Pydantic models for type safety
š License
This project is experimental and intended for educational and research purposes.
Related Servers
Notion
Integrates with Notion's API to manage a personal todo list.
Teamwork MCP
Connects to the Teamwork API to interact with projects and tasks.
Context Savvy MCP
Transforms Claude Desktop into a memory-enabled AI assistant with persistent context, secure command execution, and intelligent workflow automation.
Offorte
Create and send business proposals using AI with Offorte.
MCP Redmine
A server integration for the Redmine project management tool.
Pleasanter MCP Server
An MCP server for interacting with the Pleasanter low-code/no-code business application platform.
ClickUp
Integrate ClickUp with AI applications to manage tasks, spaces, lists, and folders.
Canvas MCP Server
An MCP server for Canvas LMS, providing full functionality for both students and instructors.
Gatherings
A server for managing gatherings and sharing expenses.
Chatvolt Agent Server
A simple notes system with resources, tools, and prompts.