MCP Educational Tutor

An intelligent tutoring server that uses GitHub documentation repositories to provide structured educational prompts and tools.

Educational Tutor

An experimental system that transforms documentation repositories into interactive educational content using AI and the Model Context Protocol (MCP).

🌟 Overview

This project consists of two main components:

  1. šŸ“š Course Content Agent - Generates structured learning courses from documentation repositories
  2. šŸ”§ MCP Educational Server - Provides standardized access to course content via MCP protocol

šŸ—ļø Architecture

Documentation Repository → Course Content Agent → Structured Courses → MCP Server → AI Tutors

The system processes documentation, creates educational content, and exposes it through standardized tools for AI tutoring applications.

šŸ“‚ Project Structure

tutor/
ā”œā”€ā”€ course_content_agent/    # AI-powered course generation from docs
│   ā”œā”€ā”€ main.py             # CourseBuilder orchestration
│   ā”œā”€ā”€ modules.py          # Core processing logic
│   ā”œā”€ā”€ models.py           # Pydantic data models
│   ā”œā”€ā”€ signatures.py       # DSPy LLM signatures
│   └── about.md           # šŸ“– Detailed documentation
ā”œā”€ā”€ mcp_server/             # MCP protocol server for course access
│   ā”œā”€ā”€ main.py            # MCP server startup
│   ā”œā”€ā”€ tools.py           # Course interaction tools
│   ā”œā”€ā”€ course_management.py # Content processing
│   └── about.md           # šŸ“– Detailed documentation
ā”œā”€ā”€ course_output/          # Generated course content
ā”œā”€ā”€ nbs/                   # Jupyter notebooks for development
└── pyproject.toml         # Project configuration

šŸš€ Quick Start

1. Install Dependencies and Create Virtual Environment

This project uses uv for fast Python package management.

# Create a virtual environment
python -m uv venv

# Install dependencies in editable mode
.venv/bin/uv pip install -e .

2. Generate Courses from Documentation

# Generate courses from a repository
.venv/bin/uv run python course_content_agent/test.py

Customize for Your Repository: Edit course_content_agent/test.py to change:

  • Repository URL (currently uses MCP docs)
  • Include/exclude specific folders
  • Output directory and caching settings

3. Start MCP Server

# Serve generated courses via MCP protocol
.venv/bin/uv run python -m mcp_server.main

# Or customize course directory
COURSE_DIR=your_course_output .venv/bin/uv run python -m mcp_server.main

4. Test MCP Integration

# Test server capabilities
.venv/bin/uv run python mcp_server/stdio_client.py

šŸ“– Detailed Documentation

For comprehensive information about each component:

  • Course Content Agent: See course_content_agent/about.md

    • AI-powered course generation
    • DSPy signatures and multiprocessing
    • Document analysis and learning path creation
  • MCP Educational Server: See mcp_server/about.md

    • MCP protocol implementation
    • Course interaction tools
    • Integration with AI assistants

šŸ”Œ MCP Integration with Cursor

To use the educational tutor MCP server with Cursor, create a .cursor/mcp.json file in your project root:

{
    "mcpServers": {
        "educational-tutor": {
            "command": "/path/to/tutor/project/.venv/bin/uv",
            "args": [
                "--directory",
                "/path/to/tutor/project",
                "run",
                "mcp_server/main.py"
            ],
            "env": {
                "COURSE_DIR": "/path/to/tutor/project/course_output"
            }
        }
    }
}

Setup Steps:

  1. Create a virtual environment: python -m uv venv
  2. Install dependencies: .venv/bin/uv pip install -e .
  3. Update the command path and the path in args to your project directory.
  4. Restart Cursor or reload the window.
  5. Use @educational-tutor in Cursor chat to access course tools.

šŸ”§ Development Status

Current Status: āœ… Functional MVP

  • Course generation from documentation repositories
  • MCP server for standardized content access
  • Multi-complexity course creation (beginner/intermediate/advanced)

Future Enhancements:

  • Support for diverse content sources (websites, videos)
  • Advanced search and recommendation systems
  • Integration with popular AI platforms

šŸ› ļø Technology Stack

  • AI Framework: DSPy for LLM orchestration
  • Content Processing: Multiprocessing for performance
  • Protocol: Model Context Protocol (MCP) for standardization
  • Models: Gemini 2.5 Flash for content generation
  • Data: Pydantic models for type safety

šŸ“„ License

This project is experimental and intended for educational and research purposes.

Related Servers