Petclinic
Interacts with the Swagger Petstore API using Petclinic v3 APIs, exposing tools for OpenAI models.
petclinic-mcp
Petclinic MCP server
Petclinic MCP server uses petclinic v2 apis (https://petstore.swagger.io/). It interacts with the Swagger Petstore API (similar to a "PetClinic") and exposes tools to be used by OpenAI models.
It exposes following capabilites
- fetch_petsByStatus: Available status values : available, pending, sold

Prerequisites
- uv package manager
- Python
Running locally
- tip use stdio transport to avoid remote server setup. Change petclinic_mcp_server.py line 39 to use stdio transport
mcp.run(transport='stdio')
- Clone the project, navigate to the project directory and initiate it with uv:
uv init
- Create virtual environment and activate it:
uv venv
source .venv/bin/activate
- Install dependencies:
uv add mcp httpx
- Launch the mcp inspector
npx @modelcontextprotocol/inspector uv run petclinic_mcp_server.py
- OR launch the mcp server without inspector
uv run petclinic_mcp_server.py
Configuration for Claude Desktop
You will need to supply a configuration for the server for your MCP Client. Here's what the configuration looks like for claude_desktop_config.json:
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-filesystem",
"/{your-project-path}/petclinic-mcp/"
]
},
"research": {
"command": "/{your-uv-install-path}/uv",
"args": [
"--directory",
"/{your-project-path}/petclinic-mcp/",
"run",
"petclinic_mcp_server.py"]
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
}
Deploy to Cloud Foundry
- tip use sse transport to deploy petclinic mcp server as a remote server. Change petclinic_mcp_server.py line 39 to use stdio transport
mcp.run(transport='sse')
- Login to your Cloud Foundry account and push the application
cf push -f manifest.yml
Binding to MCP Agents
Model Context Protocol (MCP) servers are lightweight programs that expose specific capabilities to AI models through a standardized interface. These servers act as bridges between LLMs and external tools, data sources, or services, allowing your AI application to perform actions like searching databases, accessing files, or calling external APIs without complex custom integrations.
Create a user-provided service that provides the URL for an existing MCP server:
cf cups petclinic-mcp-server -p '{"mcpServiceURL":"https://your-petclinic-mcp-server.example.com"}'
Bind the MCP service to your application:
cf bind-service ai-tool-chat petclinic-mcp-server
Restart your application:
cf restart ai-tool-chat
Your chatbot will now register with the research MCP agent, and the LLM will be able to invoke the agent's capabilities when responding to chat requests.
Related Servers
MCP WordPress Server
A comprehensive MCP server for managing WordPress sites, featuring a wide range of tools for performance monitoring, caching, and more.
Playwright IA: Midscene.js
Automate Playwright flows using natural language with Midscene.js and AI.
Slowtime MCP Server
A server for secure time-based operations, featuring timing attack protection and timelock encryption.
eBPF MCP
A secure MCP server for eBPF, designed for AI integration, kernel introspection, and automation.
CDK API MCP Server
Provides an offline AWS CDK API reference.
BAMM
Interact with the Borrow Automated Market Maker (BAMM) protocol on the Fraxtal blockchain.
Smart Prompts MCP Server
Fetches and manages prompts from GitHub repositories with intelligent discovery and composition features.
Markdown2PDF
Convert Markdown documents to PDF files with syntax highlighting, custom styling, and optional watermarking.
MCP Proxy
A bidirectional MCP proxy connecting stdio and Server-Sent Events (SSE) with OAuth support.
Agentic Tools MCP Companion
A VS Code extension with a GUI for the agentic-tools-mcp server, enhancing task and memory management.