kemdiCode MCP
kemdiCode MCP is a Model Context Protocol server that gives AI agents and IDE assistants access to 124 specialized tools for code analysis, generation, git operations, file management, AST-aware editing, project memory, cognition & self-improvement, multi-board kanban, and multi-agent coordination.
kemdiCode MCP
kemdiCode MCP is a Model Context Protocol server that gives AI agents and IDE assistants access to 147 specialized tools for code analysis, generation, git operations, file management, AST-aware editing, project memory, cognition & self-improvement, multi-board kanban with subtasks, multi-agent coordination, cluster bus with distributed LLM magistrale, typed data flow bus, structured output, and LLM-driven task management.
New in 1.29
Cluster Bus File Read & Bus Fixes — New
cluster-bus-file-readtool enables AI to read files across cluster nodes during analysis, with automatic local fallback. Fixed critical broadcast bug: tool was sending unicast to literal"broadcast"cluster ID instead of using proper broadcast method. Cleaned up duplicate signal dedup logic inhandleIncoming()(removed 3 redundant filter blocks). Addedfile:read/file:read-resultsignal handler in cluster init for cross-node file serving. 147 tools.
New in 1.28
Deep Tool Improvements — 3 new tools:
agent-init(5-step agent onboarding),task-subtask(parent-child task hierarchy with cascade delete),board-workflow(custom workflow columns). Cycle detection via DFS in task dependency graphs. TF-IDF + bigram similarity replaces Jaccard for intent drift detection. Pipeline conditional branching withevaluateCondition(). AsyncLocalStorage for automatic session ID propagation.agent-watchremoved (covered bymonitor+agent-history). Pagination (offset) fortask-list,list-memories,agent-list. Silent mode for all project tools. Cluster bus fixes:SCANreplaces blockingKEYS, fan-in aggregator cleanup on replacement. 146 tools, 649 tests passing.
New in 1.27
Tool UX & 12-Bug Audit — Cognition tools no longer require
sessionId(auto-detected). Newgit-tagtool.git-loggainsformat:"json".file-searchaddsmodeenum. 12-bug security audit fixing prototype pollution, infinite recursion, HMAC integrity, and more.
New in 1.26
CI/CD Multicast & Fan-In Aggregation — 6 CI signal types, fan-out to multiple clusters, fan-in result aggregation (all/first/majority/custom modes). Meta-router CI routing rules. Improved agent orchestration limits.
- Cognition Layer: How AI Remembers
- Usage Examples
- What's Next
- Highlights
- Compatibility
- Quick Start
- IDE Configuration
- Multi-Provider LLM
- Tool Reference
- Architecture (collapsible: system overview, 3-layer bus, cluster bus, data flow)
- Multi-Agent Orchestration
- Multi-Model Consensus
- Kanban Task Management
- Recursive Tool Invocation
- CLI Reference
- Development
- Authors
- License
Previous Releases
- Full-duplex inter-cluster communication via Redis Pub/Sub with typed signal envelopes
- 12 signal types, 3 send modes (unicast/broadcast/routed)
- Signal Flow Controller with backpressure, rate limiting, priority filtering
- Health Monitor with heartbeat tracking and stale detection
- LLM Magistrale: dispatch prompts across cluster nodes (4 strategies:
first-wins,best-of-n,consensus,fallback-chain) - Self-regulating Pass Controller (3 strategies:
min-passes,quality-target,fixed) enhance-prompttool for iterative prompt refinement- Data Flow Bus: 12 typed channels with Zod schemas, correlation tracking, priority routing, Redis bridge
- Hardening: bloom filter dedup, circuit breaker, HMAC auth
- 559 unit tests. Read the full whitepaper →
generateObject()with Zod schema validation, retry logic, and automatic JSON repair viajsonrepair- 8th LLM provider: Perplexity for research-tier queries (3-layer routing)
- Tool Annotations: all tools carry MCP-level hints (
readOnlyHint,destructiveHint,openWorldHint) task-clusterwith 11 actions for LLM-driven task groupingtask-complexity: LLM-scored 1–10 analysis with subtask recommendations- Data Flow Bus: typed message bus with 12 channels
- Global Event Bus with Redis Pub/Sub bridge
- MCP Client Capabilities:
client-sampling,client-elicit,client-roots agent-orchestratefor autonomous AI agent loops- Ambient Learning & Agent Ranking (bronze → diamond tiers)
session-recover: single-tool context restore after compactionexecuteWithGuard()deduplication: −622 lines across 262 files
- 8 interconnected cognition tools:
decision-journal,confidence-tracker,mental-model,intent-tracker,error-pattern,self-critique,smart-handoff,context-budget - In-process event bus with 9 reactive handlers (decision → confidence, error → fix lookup, drift → critique)
CognitionCrossLinkerfor bidirectional Redis links between cognition recordsself-critique→check-applicationaction;mental-model→impact-analysis,dependency-chain,invariant-checksmart-handoffauto-enriched with full cognition snapshot
console→Loggermigration across 14 files (~70 call sites)- ESLint warnings fixed, version header corrected
thinking-chaintool with 7 actions, forward-only constraint, branching, Redis-backed with 7-day TTL
git-add,git-commit,git-stash,task-get,task-delete,task-comment,board-delete,workspace-delete,file-delete,file-move,file-copy,file-backup-restore,pipeline,checkpoint-diff- Metadata for all tools, auto-sessionId, board/workspace name lookup
Cognition Layer: How AI Remembers
The cognition layer gives agents persistent self-awareness across sessions. As the agent works, it writes structured records to Redis — decisions, confidence levels, error patterns, intent hierarchies, and lessons learned.
During a session: The agent records intents, logs decisions with reasoning, tracks confidence, and matches errors against its cross-session database. At the end, self-critique extracts lessons and smart-handoff creates a structured briefing auto-enriched with a full cognition snapshot.
New session: The agent calls smart-handoff:latest (or session-recover) and gets back the intent hierarchy, approach rationale, status, warnings, lessons, and the single most important next action — no re-explanation needed.
Cross-tool intelligence: Tools react to each other through a global event bus. Recording a decision auto-creates a confidence record. Low confidence triggers drift detection. Errors scan recent decisions. Lessons cross-link to matching error patterns. All backed by CognitionCrossLinker with bidirectional Redis links.
Data lives in Redis with configurable TTL (default 7 days). Nothing is sent to external services.
Usage Examples
Using kemdiCode MCP tools from your AI agent prompt
You don't call these tools directly — your AI agent (Claude Code, Cursor, etc.) invokes them when you describe what you need. Here are real prompts and what happens behind the scenes:
Code review before committing:
You: "Review the auth module for security issues"
→ Agent calls: code-review --files "@src/auth/**/*.ts" --focus "security"
Fix a bug with AI assistance:
You: "There's a race condition in the queue processor, find and fix it"
→ Agent calls: fix-bug --description "race condition in queue processor" --files "@src/queue/"
Multi-model comparison for architecture decisions:
You: "Ask 3 models whether we should use event sourcing or CRUD for the order service"
→ Agent calls: consensus-prompt \
--prompt "Event sourcing vs CRUD for an order management service with 10k orders/day" \
--boardModels '["o:gpt-5","a:claude-sonnet-4-5","g:gemini-3-pro"]' \
--ceoModel "a:claude-opus-4-5:4k"
Project memory for persistent context:
You: "Remember that we use JWT with RS256 for auth in this project"
→ Agent calls: write-memory --name "auth-strategy" --content "JWT with RS256, keys in /etc/keys/" --tags '["auth","architecture"]'
You: "What was our auth strategy?"
→ Agent calls: read-memory --name "auth-strategy"
Multi-agent task distribution:
You: "Set up 3 agents: backend, frontend, QA. Backend works on the API, frontend on React components"
→ Agent calls: agent-register → task-create → task-push-multi
→ Agents coordinate via shared-thoughts and queue-message
What's Next
Install from npm
npm install -g kemdicode-mcp
Then add to your AI IDE:
# Claude Code
claude mcp add kemdicode-mcp -- kemdicode-mcp
# Or add to ~/.claude.json / Cursor / KiroCode / RooCode config:
{
"mcpServers": {
"kemdicode-mcp": {
"command": "kemdicode-mcp"
}
}
}
Tell the agent what you want — it picks the right tools
kemdiCode MCP works best when you tell the agent to use it. Add a line to your project's CLAUDE.md, .cursorrules, or system prompt:
You have access to kemdiCode MCP server. Use its tools for:
- Project memory (write-memory, read-memory) to persist decisions across sessions
- Cognition tools (decision-journal, smart-handoff) to track your reasoning
- Kanban (task-create, task-list) for project management
- Code analysis (code-review, find-definition) for deep code understanding
Example: Building a landing page
You: "Build a landing page for a SaaS product. Use kemdiCode tools to track progress
and remember design decisions."
What the agent does:
1. write-memory --name "landing-design" → saves design system choices
2. decision-journal → records "chose Tailwind over CSS modules" with reasoning
3. task-create → creates tasks: hero section, pricing, testimonials, footer
4. code-review → reviews each component for accessibility
5. smart-handoff → creates handoff so next session can continue seamlessly
Example: Building a Flappy Bird clone for Android
You: "Build a Flappy Bird clone in Kotlin for Android. Track architecture decisions
and use the kanban board."
What the agent does:
1. intent-tracker → sets mission "Flappy Bird Android clone"
2. mental-model → maps architecture: GameView, Bird, Pipe, ScoreManager, GameLoop
3. board-create → creates "Flappy Bird Sprint 1"
4. task-create → physics engine, rendering, collision detection, scoring, sounds
5. decision-journal → records "chose Canvas over OpenGL" (simpler for 2D, faster iteration)
6. error-pattern → when bitmap loading fails, records fix for next time
7. self-critique → "physics feels floaty, adjust gravity constant next session"
8. smart-handoff → full briefing for the next session with all context
The agent doesn't just write code — it builds a persistent understanding of your project that survives across sessions, compactions, and context resets.
Highlights
| Capability | Description |
|---|---|
| 146 MCP Tools | Code review, refactoring, testing, git, file management, AST editing, memory, checkpoints, kanban with subtasks, cognition, cluster bus, data flow, pipelines, structured output, task clustering |
| Cluster Bus | Distributed LLM orchestration: 18 signal types, 4 send modes (incl. multicast), magistrale with 4 aggregation strategies, multi-pass quality control, CI/CD fan-in |
| Data Flow Bus | 12 typed channels (ai:*, kanban:*, cognition:*, agent:*, system:*) with Zod schemas, correlation tracking, Redis bridge |
| Cognition Layer | 8 self-improvement tools: decision journal, confidence tracking, mental models, intent hierarchy with TF-IDF drift detection, error patterns, self-critique, smart handoff, context budget |
| Cross-Tool Intelligence | Global event bus + cross-linker: tools react to each other across cognition, kanban, session, and recursive modules |
| 8 LLM Providers | Native SDKs for OpenAI, Anthropic, Gemini + OpenAI-compatible for Groq, DeepSeek, Ollama, OpenRouter, Perplexity |
| Multi-Agent | Agent onboarding (agent-init), ranking (bronze→diamond), coordination via kanban boards and Redis Pub/Sub |
| Structured Output | generateObject() with Zod schemas, JSON repair, and retry logic for reliable LLM-to-data extraction |
| Parallel Multi-Model | Send one prompt to N models simultaneously; CEO-and-Board consensus pattern |
| Thinking Tokens | Unified syntax across providers: o:gpt-5:high • a:claude-sonnet-4-5:4k • g:gemini-3-pro:8k |
| Tree-sitter AST | Language-aware navigation and symbol editing for 19 languages |
| Project Memory | Persistent per-project key-value store with TTL and tags |
| Session Resurrection | loci-recall + smart-handoff restore full context after compaction |
| Hot Reload | Change provider, model, or config at runtime without restart |
| Cross-Runtime | Runs on Bun (recommended) or Node.js with automatic detection |
Compatibility
| IDE / Editor | Status | Config location |
|---|---|---|
| Claude Code | ✅ | claude mcp add or ~/.claude.json |
| Cursor | ✅ | Settings → Features → MCP |
| KiroCode | ✅ | ~/.kirocode/mcp.json |
| RooCode | ✅ | VS Code extension settings |
Quick Start
Prerequisites
- Bun ≥ 1.0 (recommended) or Node.js ≥ 18
- Redis (optional — required only for multi-agent features and cognition layer)
Install & Run
git clone https://github.com/kemdi-pl/kemdicode-mcp.git
cd kemdicode-mcp
bun install && bun run build:bun
bun run start:bun
npm install && npm run build && npm run start
IDE Configuration
claude mcp add kemdicode-mcp -- bun /path/to/kemdicode-mcp/dist/index.js
Or add to ~/.claude.json:
{
"mcpServers": {
"kemdicode-mcp": {
"command": "bun",
"args": ["/path/to/kemdicode-mcp/dist/index.js"]
}
}
}
Settings → Features → MCP:
{
"mcpServers": {
"kemdicode-mcp": {
"command": "bun",
"args": ["/path/to/kemdicode-mcp/dist/index.js", "-m", "gpt-5"]
}
}
}
Add to ~/.kirocode/mcp.json:
{
"mcpServers": {
"kemdicode-mcp": {
"command": "bun",
"args": [
"/path/to/kemdicode-mcp/dist/index.js",
"-m", "claude-sonnet-4-5",
"--redis-host", "127.0.0.1"
]
}
}
}
Add to VS Code settings (RooCode extension):
{
"mcpServers": {
"kemdicode-mcp": {
"command": "bun",
"args": [
"/path/to/kemdicode-mcp/dist/index.js",
"-m", "claude-sonnet-4-5",
"--redis-host", "127.0.0.1"
]
}
}
}
Multi-Provider LLM
kemdiCode MCP ships with 8 built-in providers. Each can be activated by setting the corresponding API key:
export OPENAI_API_KEY=sk-... # OpenAI
export ANTHROPIC_API_KEY=sk-ant-... # Anthropic
export GEMINI_API_KEY=AI... # Google Gemini
export GROQ_API_KEY=gsk_... # Groq
export DEEPSEEK_API_KEY=sk-... # DeepSeek
export OPENROUTER_API_KEY=sk-or-... # OpenRouter
export PERPLEXITY_API_KEY=pplx-... # Perplexity (research tier)
# Ollama — no key required (local)
Provider Syntax
Use provider:model (or the short alias) anywhere a model is accepted:
openai:gpt-5 o:gpt-5 # Latest flagship model
anthropic:claude-sonnet-4-5 a:claude-sonnet-4-5 # Best balance
anthropic:claude-opus-4-5 a:claude-opus-4-5 # Maximum intelligence
gemini:gemini-3-pro g:gemini-3-pro # Most intelligent
groq:llama-3.3-70b q:llama-3.3-70b # Fast inference
deepseek:deepseek-chat d:deepseek-chat # Cost effective
ollama:llama3.3 l:llama3.3 # Local deployment
openrouter:gpt-5 r:gpt-5 # Aggregator access
perplexity:sonar-pro p:sonar-pro # Research queries
Thinking / Reasoning Tokens
Append a third segment to enable extended thinking:
| Provider | Syntax | Effect |
|---|---|---|
| OpenAI (reasoning) | o:gpt-5:high | Sets reasoning_effort to low / medium / high |
| Anthropic | a:claude-sonnet-4-5:4k | Allocates 4 096 extended thinking tokens |
| Gemini | g:gemini-3-pro:8k | Allocates 8 192 thinking tokens |
Tool Reference
146 tools across 23 categories.
| Category | # | Tools |
|---|---|---|
| Cluster Bus | 8 | cluster-bus-status cluster-bus-topology cluster-bus-send cluster-bus-magistrale cluster-bus-flow cluster-bus-routing cluster-bus-inspect cluster-bus-file-read |
| Cognition | 8 | decision-journal confidence-tracker mental-model intent-tracker error-pattern self-critique smart-handoff context-budget |
| AI Agents | 4 | plan build brainstorm ask-ai |
| Multi-LLM | 3 | multi-prompt consensus-prompt enhance-prompt |
| Code Analysis | 8 | code-review explain-code find-definition find-references find-symbols semantic-search code-outline analyze-deps |
| Line Editing | 4 | insert-at-line delete-lines replace-lines replace-content |
| Symbol Editing | 3 | insert-before-symbol insert-after-symbol rename-symbol |
| Code Modification | 5 | fix-bug refactor auto-fix auto-fix-agent write-tests |
| Project Memory | 8 | write-memory read-memory list-memories edit-memory delete-memory checkpoint-save checkpoint-restore checkpoint-diff |
| Git | 9 | git-status git-diff git-log git-blame git-branch git-add git-commit git-stash git-tag |
| File Operations | 9 | file-read file-write file-search file-tree file-diff file-delete file-move file-copy file-backup-restore |
| Project | 5 | project-info run-script run-tests run-lint check-types |
| Kanban — Tasks | 13 | task-create task-get task-list task-update task-delete task-comment task-claim task-assign task-push-multi task-subtask board-status task-cluster task-complexity |
| Kanban — Workspaces | 5 | workspace-create workspace-list workspace-join workspace-leave workspace-delete |
| Kanban — Boards | 7 | board-create board-list board-share board-members board-invite board-delete board-workflow |
| Recursive | 4 | invoke-tool invoke-batch invocation-log agent-orchestrate |
| Multi-Agent | 14 | agent-init agent-list agent-register agent-alert agent-inject agent-history monitor agent-summary agent-rank queue-message shared-thoughts get-shared-context feedback batch |
| Orchestration | 1 | pipeline |
| Session | 6 | session-list session-info session-create session-switch session-delete session-recover |
| MCP Client | 3 | client-sampling client-elicit client-roots |
| Knowledge Graph | 4 | graph-query graph-find-path loci-recall sequence-recommend |
| Thinking Chain | 1 | thinking-chain |
| MPC Security | 4 | mpc-split mpc-distribute mpc-reconstruct mpc-status |
| RL Learning | 2 | rl-reward-stats rl-dopamine-log |
| System | 8 | env-info memory-usage ai-config ai-models tool-health config ping help |
Architecture
| Layer | Component | Description |
|---|---|---|
| Clients | Claude Code, Cursor, KiroCode, RooCode | Connect via SSE + JSON-RPC (MCP Protocol) |
| HTTP Server | :3100 (Bun or Node.js) | Routes: /sse, /message, /resume, /stream |
| Session Manager | Per-client isolation | CWD injection, activity tracking, SSE keep-alive |
| Tool Registry | 146 tools, 23 categories | Zod schema validation, tool annotations, lazy loading |
| Cluster Bus | Distributed signal bus | Full-duplex inter-cluster signals via Redis Pub/Sub |
| Data Flow Bus | 12 typed channels | Zod schemas, correlation tracking, priority routing |
| Cognition Layer | Global event bus + cross-linker | 9 reactive handlers, bidirectional Redis links |
| Provider Registry | 8 LLM providers | Native SDKs + OpenAI-compatible. Hot-reload, structured output |
| Tree-sitter AST | 19 languages | WASM parsers, symbol navigation, rename, insert |
| Runtime | Bun / Node.js | Auto-detection, unified HTTP, process, crypto |
| Redis (DB 2) | Shared state | mcp:context:*, mcp:agents:*, mcp:kanban:*, mcp:memory:*, mcp:cognition:* |
→ Full diagram: docs/architecture-overview.md
The server uses a 3-layer bus with 3 independent Redis paths and anti-amplification bridges:
+====================================================================+
|| L3: ClusterBus (Redis Pub/Sub, mcp:cluster:*) ||
|| ||
|| 18 signal types | 4 send modes (unicast/broadcast/routed/mcast) ||
|| SignalFlowCtrl | MetaRouter | HealthMonitor | FanInAggregator ||
|| ||
|| +---------------------+ +------------------------+ ||
|| | EventBridge L3<>L1 | | DataFlowBridge L3<>L2 | ||
|| | hop limit = 5 | | hop limit = 5 | ||
|| +---------------------+ +------------------------+ ||
+====================================================================+
|| L2: DataFlowBus (in-process + Redis mcp:dataflow:{channel}) ||
|| ||
|| ai:completion | kanban:task-change | cognition:decision ||
|| ai:structured | kanban:complexity | cognition:intent ||
|| ai:research | | cognition:error ||
|| agent:status | agent:message | system:health | system:cfg ||
|| ||
|| DataFlowEnvelope: correlation, priority 0-3, TTL, Zod schemas ||
+====================================================================+
|| L1: GlobalEventBus (in-process + Redis mcp:events:{type}) ||
|| ||
|| namespaced events | async queueMicrotask | max chain depth = 8 ||
|| CognitionEventBus wrapper (auto-prefix "cognition:") ||
+====================================================================+
|
Module Handlers: cognition (9) | kanban (2) | loop (2)
→ Full documentation: docs/architecture-3-layer-bus.md
Distributed LLM orchestration across cluster nodes with typed signals and multi-pass quality control.
# Register a cluster node
cluster-bus-topology --action "register" --clusterId "backend-ai" \
--clusterName "Backend LLM" --capabilities '["typescript","code-review"]' \
--metaTags '["role:worker","tier:pro"]'
# Magistrale: dispatch to multiple clusters, pick best result
cluster-bus-magistrale --prompt "Design a rate limiter" --strategy "best-of-n" \
--maxTargets 3 --timeoutMs 60000 --minResponses 2 --qualityThreshold 0.85 \
--passStrategy "quality-target" --maxPasses 5
Magistrale strategies: first-wins • best-of-n • consensus • fallback-chain
Pass strategies: min-passes • quality-target • fixed
→ Full guide: examples/08-cluster-bus-magistrale.md
12 typed channels for structured inter-module communication with Zod schemas and correlation tracking.
Automatic flows:
ask-ai→ai:completion→ cognition subscribes → logs decision contexttask-update→kanban:task-change→ agent subscribes → notifies assignee- error detected →
cognition:error→ error-pattern DB → suggests fix tool-health→system:health→ monitor → alerts on degradation
Every message follows DataFlowEnvelope: unique ID, correlation chain, priority (0–3), TTL, Zod-validated payload. Redis bridge for cross-session sync.
→ Full guide: examples/09-dataflow-bus.md
Multi-Agent Orchestration
Register agents, distribute work across kanban boards, and coordinate via Redis Pub/Sub:
# Quick onboarding — register, count tasks, claim, summarize, set alerts
agent-init --sessionId "sess-1" --agentName "backend-dev" --role "worker" \
--capabilities '["typescript","postgresql"]' --boardId "sprint-1"
# Or manual registration
agent-register --agents '[
{"id":"backend","role":"backend","capabilities":["typescript","postgresql"]},
{"id":"frontend","role":"frontend","capabilities":["react","tailwind"]},
{"id":"qa","role":"quality","capabilities":["jest","cypress"]}
]'
# Distribute tasks
task-push-multi --taskIds '["api-1","api-2"]' --agents '["backend"]' --mode assign
# Broadcast a requirement
queue-message --broadcast true --message "Use OpenAPI 3.0 spec" --priority high
# Real-time monitoring
monitor --view hierarchy
Multi-Model Consensus
Send one prompt to N models in parallel, then let a CEO model synthesize:
# CEO-and-Board consensus
consensus-prompt \
--prompt "Redis vs PostgreSQL for sessions?" \
--boardModels '["o:gpt-5", "a:claude-sonnet-4-5", "g:gemini-3-pro"]' \
--ceoModel "a:claude-opus-4-5:4k"
All board models run via Promise.allSettled() — individual failures never block the others.
Kanban Task Management
# Create a workspace
workspace-create --name "Project Alpha"
# Add boards with custom workflow
board-create --name "Backend Sprint 1" --workspaceId <ws-id>
board-workflow --boardId <board-id> --action set --columns '["backlog","dev","review","qa","done"]'
# Batch-create tasks with subtasks
task-create --tasks '[
{"title":"Auth API","priority":"high","boardId":"<id>"},
{"title":"Rate limiter","priority":"medium","boardId":"<id>"}
]'
task-subtask --action create --parentTaskId "t-1" --title "JWT validation" --priority "high"
# Push to agents
task-push-multi --taskIds '["t-1","t-2"]' --agents '["agent-1"]' --mode assign
Features: workspaces • multiple boards • custom workflow columns • parent-child subtasks with cascade delete • dependency cycle detection • role-based access • batch ops (1-20 per call) • assign / clone / notify • append-only task comments • pagination with offset
Recursive Tool Invocation
Sub-agents can invoke other tools with built-in safety limits (max depth 2, rate-limited):
invoke-batch --invocations '[
{"tool":"file-read","args":{"path":"@src/index.ts"}},
{"tool":"run-tests","args":{}}
]' --mode parallel
CLI Reference
bun dist/index.js [options]
| Flag | Default | Description |
|---|---|---|
-m, --model | — | Primary AI model |
-f, --fallback-model | — | Fallback on quota / error |
--port | 3100 | HTTP server port |
--host | 127.0.0.1 | Bind address |
--redis-host | 127.0.0.1 | Redis host |
--redis-port | 6379 | Redis port |
--no-context | — | Disable Redis context sharing |
-v, --verbose | — | Full output with decorations |
--compact | — | Essential fields only |
Development
Build & Run
| Command | Description |
|---|---|
bun install | Install all dependencies |
bun run build:bun | Bundle for Bun runtime |
bun run start:bun | Start server on :3100 |
bun run dev:bun | Watch mode with hot-reload |
npm run build | TypeScript compilation for Node.js |
npm run start | Start with Node.js |
Quality
| Command | Description |
|---|---|
bun run typecheck | Type-check without emitting |
bun run lint | ESLint |
bun run format | Prettier |
bun run prepare | All checks (pre-commit) |
Environment Variables
| Variable | Description |
|---|---|
OPENAI_API_KEY | OpenAI API key |
ANTHROPIC_API_KEY | Anthropic API key |
GEMINI_API_KEY | Google Gemini API key |
GROQ_API_KEY | Groq API key |
DEEPSEEK_API_KEY | DeepSeek API key |
OPENROUTER_API_KEY | OpenRouter API key |
PERPLEXITY_API_KEY | Perplexity API key (research tier) |
MPC_MASTER_SECRET | Master secret for MPC security tools |
Documentation
| Document | Description |
|---|---|
| Technical Whitepaper (PDF) | Full architecture description covering protocol layers, cognition system, and LLM Magistrale with formal specifications |
| Architecture Overview | High-level system layers diagram |
| 3-Layer Bus Architecture | Detailed L3/L2/L1 bus design with bridges |
| Examples | 12 practical guides covering all major features |
Authors
Dawid Irzyk — dawid@kemdi.pl Kemdi Sp. z o.o.
License
This project is licensed under the GNU General Public License v3.0 — see the LICENSE file for details.
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Image Generation
Generate images from text prompts using the Together AI API.
RapidTools Validate
Deterministic JSON Schema validation with signed cryptographic attestations. Validate payloads, verify signatures, and retrieve attestation records.
browser-devtools-mcp
A Playwright-based MCP server that exposes a live browser as a traceable, inspectable, debuggable and controllable execution environment for AI agents.
Agent Forge
A platform for creating and managing AI agents with specific personalities and simulating their responses. Requires a DeepSeek API key.
Dan MCP
An example MCP server deployed on Cloudflare Workers without authentication.
Just Prompt
A unified interface for various Large Language Model (LLM) providers, including OpenAI, Anthropic, Google Gemini, Groq, DeepSeek, and Ollama.
VibeCoding System
A conversation-driven development framework for rapid MVP and POC creation.
Sailor
Generate and render Mermaid diagrams as images using LLMs.
Qase MCP Server
An MCP server for interacting with the Qase test management platform.
MCP Config Generator
A web tool for safely adding MCP servers to your Claude Desktop configuration.