MCP Utils
A Python package with utilities and helpers for building MCP-compliant servers, often using Flask and Redis.
mcp-utils
A Python utility package for building Model Context Protocol (MCP) servers.
Table of Contents
- mcp-utils
Overview
mcp-utils provides utilities and helpers for building MCP-compliant servers in Python, with a focus on synchronous implementations using Flask. This package is designed for developers who want to implement MCP servers in their existing Python applications without the complexity of asynchronous code.
Key Features
- Basic utilities for MCP server implementation
- Server-Sent Events (SSE) support
- Simple decorators for MCP endpoints
- Synchronous implementation
- HTTP protocol support
- Redis response queue
- Comprehensive Pydantic models for MCP schema
- Built-in validation and documentation
Installation
pip install mcp-utils
Requirements
- Python 3.10+
- Pydantic 2
Optional Dependencies
- Flask (for web server)
- Gunicorn (for production deployment)
- Redis (for response queue)
Usage
Basic MCP Server
Here's a simple example of creating an MCP server:
from mcp_utils.core import MCPServer
from mcp_utils.schema import GetPromptResult, Message, TextContent, CallToolResult
# Create a basic MCP server
mcp = MCPServer("example", "1.0")
@mcp.prompt()
def get_weather_prompt(city: str) -> GetPromptResult:
return GetPromptResult(
description="Weather prompt",
messages=[
Message(
role="user",
content=TextContent(
text=f"What is the weather like in {city}?",
),
)
],
)
@mcp.tool()
def get_weather(city: str) -> str:
return "sunny"
Flask Example
For production use, you can use a simple Flask app with the mcp server and support Streamable HTTP from version 2025-06-18.
from flask import Flask, Response, url_for, request
# Create Flask app and MCP server with Redis queue
app = Flask(__name__)
mcp = MCPServer(
"example",
"1.0",
)
@app.route("/mcp", methods=["POST"])
def mcp_route():
response = mcp.handle_message(request.get_json())
return jsonify(response.model_dump(exclude_none=True))
if __name__ == "__main__":
app.run(debug=True)
SQLAlchemy Transaction Handling Example
For production use, you can integrate the MCP server with Flask, Redis, and SQLAlchemy for better message handling and database transaction management:
from flask import Flask, request
from sqlalchemy.orm import Session
from sqlalchemy import create_engine
# Create engine for PostgreSQL database
engine = create_engine("postgresql://user:pass@localhost/dbname")
# Create Flask app and MCP server with Redis queue
app = Flask(__name__)
mcp = MCPServer(
"example",
"1.0",
)
@app.route("/mcp", methods=["POST"])
def mcp_route():
with Session(engine) as session:
try:
response = mcp.handle_message(request.get_json())
session.commit()
except:
session.rollback()
raise
else:
return jsonify(response.model_dump(exclude_none=True))
if __name__ == "__main__":
app.run(debug=True)
For a more comprehensive example including logging setup and session management, check out the example Flask application in the repository.
Running with Gunicorn
Gunicorn is a better approach to running even locally. To run the app with gunicorn
from gunicorn.app.base import BaseApplication
class FlaskApplication(BaseApplication):
def __init__(self, app, options=None):
self.options = options or {}
self.application = app
super().__init__()
def load_config(self):
config = {
key: value
for key, value in self.options.items()
if key in self.cfg.settings
}
for key, value in config.items():
self.cfg.set(key.lower(), value)
def load(self):
return self.application
if __name__ == "__main__":
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("[%(asctime)s] [%(levelname)s] %(name)s: %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
options = {
"bind": "0.0.0.0:9000",
"workers": 1,
"worker_class": "gevent",
"loglevel": "debug",
}
FlaskApplication(app, options).run()
Connecting with MCP Clients
Cursor
- Edit MCP settings and add to configuration
{
"mcpServers": {
"server-name": {
"url": "http://localhost:9000/mcp"
}
}
}
Claude Desktop
As of this writing, Claude Desktop does not support MCP through SSE and only supports stdio. To connect Claude Desktop with an MCP server, you'll need to use mcp-proxy.
Configuration example for Claude Desktop:
{
"mcpServers": {
"weather": {
"command": "/Users/yourname/.local/bin/mcp-proxy",
"args": ["http://127.0.0.1:9000/sse"]
}
}
}
Installing via Smithery
To install MCP Proxy for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp-proxy --client claude
Installing via PyPI
The stable version of the package is available on the PyPI repository. You can install it using the following command:
# Option 1: With uv (recommended)
uv tool install mcp-proxy
# Option 2: With pipx (alternative)
pipx install mcp-proxy
Once installed, you can run the server using the mcp-proxy command.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Related Projects
- MCP Python SDK - The official async Python SDK for MCP
- mcp-proxy - A proxy tool to connect Claude Desktop with MCP servers
License
MIT License
Testing with MCP Inspector
The MCP Inspector is a useful tool for testing and debugging MCP servers. It provides a web interface to inspect and test MCP server endpoints.
Installation
Install MCP Inspector using npm:
npm install -g @modelcontextprotocol/inspector
Usage
- Start your MCP server (e.g., the Flask example above)
- Run MCP Inspector:
git clone git@github.com:modelcontextprotocol/inspector.git
cd inspector
npm run build
npm start
- Open your browser and navigate to
http://127.0.0.1:6274/ - Enter your MCP server URL (e.g.,
http://localhost:9000/sse) - Use the inspector to:
- Change transport type to SSE
- Test server connections
- Monitor SSE events
- Send test messages
- Debug responses
This tool is particularly useful during development to ensure your MCP server implementation is working correctly and complies with the protocol specification.
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
MCP Front
An OAuth 2.1 proxy for MCP servers that enables single sign-on with Google, domain validation, and per-user tokens.
MCP Framework
A TypeScript framework for building Model Context Protocol (MCP) servers.
Simple MCP Server
A starter MCP server built with TypeScript and the official MCP SDK, featuring example tools like echo, add, time, and flight status.
Tatara MCP Server
An MCP server for interacting with the Tatara blockchain ecosystem. Requires configuration for the Tatara RPC endpoint and a wallet private key.
Laravel Codebase Introspection
Introspects Laravel codebases to provide structured information about views, routes, classes, and models using the mateffy/laravel-introspect package.
Rails Active MCP
A Ruby gem providing secure Rails console access through MCP for AI agents and development tools.
Fused MCP
A Python-based MCP server for data scientists to run Python code with a Claude client.
Sandbox MCP Server
Provides isolated Docker environments for secure code execution.
MCP Prompt Collector
Tools for logging, analyzing, and improving Claude Desktop prompts to enhance prompt engineering skills.
MCP Expert Server
An MCP server for query generation and documentation assistance using Claude AI.