Zero-Vector v3

A server for Zero-Vector's hybrid vector-graph persona and memory management system, featuring advanced LangGraph workflow capabilities.

Zero-Vector MCP v3.0: Hybrid Vector-Graph AI Memory System with LangGraph Workflows

šŸš€ STATUS: PRODUCTION READY | Infrastructure: VALIDATED | LangGraph: OPERATIONAL

A complete AI persona memory management system combining a high-performance hybrid vector-graph database server with advanced LangGraph workflow orchestration and a Model Context Protocol (MCP) interface for sophisticated AI memory, relationship understanding, and multi-agent coordination.

šŸ”— GitHub Repository: https://github.com/MushroomFleet/zero-vector-MCP

šŸŽÆ System Status: OPERATIONAL

Last Infrastructure Validation: June 21, 2025
Current Version: v3.0 Production-Ready
Zero-Vector v2 Server: āœ… Active (Port 3000)
Zero-Vector v3 LangGraph: āœ… Active (Port 3001)
MCP Server: āœ… Active (Multi-server coordination)

āœ… Recently Validated Infrastructure

  • LangGraph StateGraph Schema: Resolved with proper Zod integration
  • Multi-Agent Orchestration: 7-node workflow graph operational
  • Human-in-the-Loop Processing: Approval workflows functional
  • Performance Caching: Redis/PostgreSQL integration active
  • Service Coordination: v2/v3 system coordination validated
  • MCP Integration: 24 tools fully operational across both systems

šŸ“Š Confirmed Performance Metrics

  • Startup Time: 2-3 seconds for complete system initialization
  • LangGraph Compilation: <3ms for 7-node workflow graphs
  • Vector Operations: <50ms for 10,000+ vector searches
  • Workflow Execution: <2s for standard AI conversations
  • Memory Integration: <500ms for hybrid memory retrieval
  • Cache Hit Rate: 95%+ performance optimization

šŸŽÆ Overview

Zero-Vector MCP v3.0 provides a production-ready hybrid vector-graph solution with advanced LangGraph workflow capabilities for AI persona management, featuring:

  • Hybrid Vector-Graph Engine - Combines semantic search with knowledge graph traversal
  • LangGraph Workflow Orchestration - Multi-agent coordination with human-in-the-loop processing
  • AI Persona Memory with Relationships - Context-aware memory with entity extraction and graph building
  • Enhanced MCP Integration - 24 specialized tools including workflow management, graph exploration, and advanced content access
  • Multi-Step Reasoning - Sophisticated reasoning chains with approval gates and performance monitoring
  • Knowledge Graph Intelligence - Automatic entity recognition and relationship mapping
  • Production-Ready Architecture - Feature flags, comprehensive monitoring, and zero-downtime deployment

šŸ—ļø System Architecture

graph TB
    subgraph "AI Development Environment"
        A[Cline AI Assistant] --> B[MCP Client]
    end
    
    subgraph "Zero-Vector MCP v3.0 System"
        B --> C[MCP Server v3.0]
        C --> D[Zero-Vector v2 API]
        C --> E[Zero-Vector v3 API]
        
        subgraph "Zero-Vector v2 (Original System)"
            D --> F[Hybrid Vector Store]
            D --> G[Graph Database]
            D --> H[SQLite Metadata]
        end
        
        subgraph "Zero-Vector v3 (LangGraph System)"
            E --> I[LangGraph Workflow Engine]
            I --> J[Multi-Agent Orchestration]
            I --> K[Human Approval Service]
            I --> L[Performance Cache Manager]
            I --> M[State Management]
        end
        
        subgraph "v3.0 Core Services"
            N[Hybrid Memory Manager]
            O[Entity Extractor]
            P[Graph Service]
            Q[Embedding Service]
            R[Feature Flags]
            S[Workflow Manager]
            T[Approval Service]
        end
        
        D --> N
        D --> O
        D --> P
        D --> Q
        D --> R
        E --> S
        E --> T
        
        subgraph "LangGraph Agents"
            U[Hybrid Retrieval Agent]
            V[Persona Memory Agent]
            W[Multi-Step Reasoning Agent]
            X[Human Approval Agent]
        end
        
        J --> U
        J --> V
        J --> W
        J --> X
        
        subgraph "Knowledge Graph"
            Y[Entities]
            Z[Relationships]
            AA[Graph Traversal]
        end
        
        G --> Y
        G --> Z
        G --> AA
    end
    
    subgraph "External Services"
        BB[OpenAI Embeddings]
        CC[Local Transformers]
        DD[PostgreSQL Checkpointer]
        EE[Redis Cache]
    end
    
    Q --> BB
    Q --> CC
    M --> DD
    L --> EE
    
    style A fill:#e1f5fe
    style C fill:#f3e5f5
    style F fill:#e8f5e8
    style G fill:#ffeb3b
    style I fill:#e3f2fd
    style J fill:#e8f5e8
    style N fill:#fff3e0
    style O fill:#e1f5fe
    style P fill:#e1f5fe
    style Q fill:#fff3e0
    style R fill:#f3e5f5
    style S fill:#e3f2fd
    style T fill:#ffcdd2

šŸš€ Quick Start

Prerequisites

  • Node.js 18.0.0 or higher
  • 4GB+ available RAM (recommended for v3.0)
  • PostgreSQL (for LangGraph checkpointing)
  • Redis (for performance caching)
  • Git

Installation

# Clone the repository
git clone https://github.com/MushroomFleet/zero-vector-3.git
cd zero-vector-3

# 1. Set up the Zero-Vector v2 server (Original System)
cd zero-vector/server
npm install
npm run setup:database
npm run generate:api-key  # Generate API key for MCP
cp env.example .env  # Add your OpenAI API key
npm start  # Runs on port 3000

# 2. Set up the Zero-Vector v3 server (LangGraph System)
cd zero-vector-3/server
npm install
cp env.example .env  # Configure environment
npm run setup:postgres # install postgre16.9 & redis first
npm run setup:infrastructure  # Setup PostgreSQL and Redis
npm start  # Runs on port 3001

# 3. Set up the MCP server (in a new terminal)
cd MCP
npm install
cp env.example .env
# Edit .env with both server URLs and API keys
npm start

Quick Test

# Test the vector database (v2)
curl http://localhost:3000/health

# Test the LangGraph system (v3)
curl http://localhost:3001/health

# Test MCP server connection (both systems)
cd MCP
npm run test:connection

šŸ“š Component Documentation

This system consists of three main components, each with detailed documentation:

šŸ—„ļø Zero-Vector v2 Server (Original System)

Location: zero-vector/README.md

The core vector database server providing:

  • High-performance vector storage and similarity search
  • RESTful API for vector operations
  • SQLite metadata persistence
  • Authentication and security middleware
  • Real-time monitoring and health checks

šŸ¤– Zero-Vector v3 Server (LangGraph System)

Location: zero-vector-3/README.md

The advanced LangGraph workflow server providing:

  • Multi-agent workflow orchestration
  • Human-in-the-loop approval processing
  • Advanced reasoning chains and state management
  • Performance caching and monitoring
  • PostgreSQL checkpointing and Redis caching

šŸ”Œ MCP Server v3.0

Location: MCP/README.md

The Model Context Protocol interface providing:

  • 24 specialized tools for persona, memory, graph, and workflow management
  • Multi-server coordination between v2 and v3 systems
  • LangGraph workflow management capabilities
  • Seamless integration with AI development tools
  • Comprehensive error handling and validation

✨ Key Features

LangGraph Workflow Management (NEW in v3.0)

  • Multi-Agent Orchestration: Sophisticated agent coordination with state management
  • Human-in-the-Loop Processing: Approval workflows with resume capabilities
  • Multi-Step Reasoning: Complex reasoning chains with configurable depth
  • Performance Monitoring: Real-time metrics and analytics for workflow optimization
  • Thread Continuity: Persistent conversation state across sessions
  • Workflow Caching: Performance optimization for repeated operations

Hybrid Vector-Graph Performance

  • Memory Efficiency: 2GB optimized storage supporting 349,525+ vectors
  • Hybrid Search: Sub-300ms search combining vector similarity with graph expansion
  • Entity Extraction: Automatic recognition of people, concepts, events, and relationships
  • Graph Traversal: Multi-depth relationship exploration with configurable limits
  • Scalable Architecture: Feature-flagged deployment with zero-downtime rollback

AI Persona Management with Knowledge Graphs

  • Persona Creation: Configurable AI personas with memory and graph capabilities
  • Enhanced Memory Storage: Context-aware memory with automatic entity extraction
  • Hybrid Search: Find relevant memories using vector similarity and graph relationships
  • Knowledge Graph Building: Automatic entity recognition and relationship mapping
  • Conversation History: Complete conversation tracking with entity linking
  • Memory Cleanup: Automated cleanup of old memories and orphaned graph entities

MCP Integration Tools (24 total)

  • Persona Tools (5): create_persona, list_personas, get_persona, update_persona, delete_persona
  • Memory Tools (6): add_memory, search_persona_memories, get_full_memory, add_conversation, get_conversation_history, cleanup_persona_memories
  • Graph Tools (4): explore_knowledge_graph, hybrid_memory_search, get_graph_context, get_graph_stats
  • Workflow Tools (6): execute_workflow, get_workflow_status, resume_workflow, cancel_workflow, list_active_workflows, get_workflow_metrics
  • Utility Tools (3): get_system_health, get_persona_stats, test_connection

Security & Production Features

  • API Key Authentication: Secure key generation with role-based permissions
  • Rate Limiting: Multi-tier rate limiting (global, per-key, per-endpoint)
  • Input Validation: Comprehensive request validation and sanitization
  • Structured Logging: Winston-based logging with performance metrics
  • Health Monitoring: Multiple health check endpoints for different monitoring needs
  • Multi-Server Coordination: Seamless integration between v2 and v3 systems

šŸŽ® Use Cases

LangGraph Workflow Operations (v3.0)

Basic AI Conversation with Workflow

// Execute a basic conversation workflow
const workflowResult = await mcpClient.executeWorkflow({
  query: "Explain machine learning fundamentals for beginners",
  persona: "helpful_assistant",
  user_id: "user123",
  workflow_type: "zero_vector_conversation",
  config: {
    enable_approval: false,
    cache_enabled: true,
    confidence_threshold: 0.8,
    max_reasoning_steps: 5
  }
});

// Monitor workflow execution
const status = await mcpClient.getWorkflowStatus({
  workflow_id: workflowResult.workflow_id,
  thread_id: workflowResult.thread_id,
  include_metadata: true
});

Multi-Step Reasoning with Human Approval

// Execute complex reasoning workflow
const complexWorkflow = await mcpClient.executeWorkflow({
  query: "Compare machine learning approaches for NLP and recommend the best approach for a chatbot system, considering scalability, cost, and performance",
  persona: "technical_expert", 
  user_id: "user456",
  workflow_type: "multi_step_reasoning",
  config: {
    enable_approval: true,
    max_reasoning_steps: 10,
    confidence_threshold: 0.9,
    enable_memory_maintenance: true
  },
  thread_id: "conversation_abc123"
});

// Resume after human approval
const resumeResult = await mcpClient.resumeWorkflow({
  thread_id: "conversation_abc123",
  workflow_id: complexWorkflow.workflow_id,
  approval_result: {
    approved: true,
    feedback: "Add more details about implementation complexity",
    modifications: {
      add_implementation_details: true,
      focus_areas: ["complexity", "scalability", "cost"]
    }
  }
});

Workflow Performance Monitoring

// Get comprehensive workflow metrics
const metrics = await mcpClient.getWorkflowMetrics({
  time_range: "24h",
  workflow_type: "multi_step_reasoning",
  user_id: "user123",
  include_detailed: true
});

// List active workflows for monitoring
const activeWorkflows = await mcpClient.listActiveWorkflows({
  user_id: "user123",
  status: "running",
  workflow_type: "multi_step_reasoning",
  limit: 10
});

// Cancel workflow if needed
await mcpClient.cancelWorkflow({
  workflow_id: "workflow_xyz789",
  thread_id: "conversation_abc123",
  reason: "User requested cancellation due to changed requirements"
});

AI Assistant Memory with Knowledge Graphs (v2.0 + v3.0)

// Create a persona for an AI assistant
const persona = await mcpClient.createPersona({
  name: "Technical Assistant",
  description: "Helpful coding assistant with memory and graph knowledge",
  systemPrompt: "You are a helpful technical assistant with access to knowledge graphs...",
  maxMemorySize: 1000
});

// Add important information to memory (automatically extracts entities)
await mcpClient.addMemory({
  personaId: persona.id,
  content: "John Smith from Microsoft called about the Azure project. He mentioned working with Sarah Johnson on cloud architecture.",
  type: "conversation",
  importance: 0.8
});

// Hybrid search combining vector similarity with graph expansion
const hybridResults = await mcpClient.hybridMemorySearch({
  personaId: persona.id,
  query: "cloud architecture project",
  limit: 5,
  useGraphExpansion: true,
  graphDepth: 2,
  threshold: 0.7
});

// Use workflow to process complex queries with memory integration
const workflowWithMemory = await mcpClient.executeWorkflow({
  query: "Based on my previous conversations about Azure, what are the key architectural considerations for our project?",
  persona: persona.id,
  user_id: "user123",
  workflow_type: "zero_vector_conversation",
  config: {
    use_memory_integration: true,
    enable_graph_expansion: true,
    memory_context_depth: 3
  }
});

Enhanced Memory Context Discovery

// Get comprehensive context for specific entities
const context = await mcpClient.getGraphContext({
  personaId: persona.id,
  entityIds: ["entity-john-smith-uuid", "entity-microsoft-uuid"],
  includeRelationships: true,
  maxDepth: 2
});

// Search with configurable content display
const searchWithFullContent = await mcpClient.searchPersonaMemories({
  personaId: persona.id,
  query: "white hat tales",
  limit: 5,
  show_full_content: true,  // No truncation
  threshold: 0.3
});

Integration with Cline (v3.0)

{
  "mcpServers": {
    "zero-vector-v3": {
      "command": "node",
      "args": ["C:/path/to/zero-vector-MCP/MCP/src/index.js"],
      "env": {
        "ZERO_VECTOR_BASE_URL": "http://localhost:3000",
        "ZERO_VECTOR_API_KEY": "your_zero_vector_2_api_key",
        "ZERO_VECTOR_V3_BASE_URL": "http://localhost:3001",
        "ZERO_VECTOR_V3_API_KEY": "your_zero_vector_3_api_key"
      }
    }
  }
}

šŸ› ļø Development

Project Structure

zero-vector-MCP/
ā”œā”€ā”€ zero-vector/                 # Vector database server (v2)
│   ā”œā”€ā”€ server/                  # Node.js backend
│   │   ā”œā”€ā”€ src/                 # Source code
│   │   ā”œā”€ā”€ scripts/             # Setup scripts
│   │   ā”œā”€ā”€ data/                # Database files
│   │   └── README.md            # Server documentation
│   └── README.md                # Server overview
ā”œā”€ā”€ zero-vector-3/               # LangGraph workflow server (v3)
│   ā”œā”€ā”€ server/                  # Node.js backend
│   │   ā”œā”€ā”€ src/                 # Source code
│   │   │   ā”œā”€ā”€ agents/          # LangGraph agents
│   │   │   ā”œā”€ā”€ graphs/          # Workflow graphs
│   │   │   ā”œā”€ā”€ services/        # Core services
│   │   │   └── state/           # State management
│   │   ā”œā”€ā”€ scripts/             # Setup scripts
│   │   └── README.md            # v3 documentation
│   └── README.md                # v3 overview
ā”œā”€ā”€ MCP/                         # Model Context Protocol server
│   ā”œā”€ā”€ src/                     # MCP server source
│   │   ā”œā”€ā”€ tools/               # MCP tool implementations
│   │   │   ā”œā”€ā”€ workflows.js     # NEW: Workflow tools
│   │   │   ā”œā”€ā”€ personas.js      # Persona management
│   │   │   ā”œā”€ā”€ memories.js      # Memory operations
│   │   │   ā”œā”€ā”€ graph.js         # Graph operations
│   │   │   └── utilities.js     # System utilities
│   │   └── utils/               # Utilities
│   ā”œā”€ā”€ .env.example             # Environment template
│   └── README.md                # MCP documentation
ā”œā”€ā”€ DOCS/                        # Internal documentation
└── README.md                    # This file

Development Setup

# Start Zero-Vector v2 server in development mode
cd zero-vector/server
npm run dev  # Port 3000

# Start Zero-Vector v3 server in development mode (new terminal)
cd zero-vector-3/server
npm run dev  # Port 3001

# Start MCP server in development mode (new terminal)
cd MCP
npm run dev

# Run tests
npm test

Environment Configuration

Zero-Vector v2 Server:

NODE_ENV=development
PORT=3000
MAX_MEMORY_MB=2048
DEFAULT_DIMENSIONS=1536
LOG_LEVEL=info

Zero-Vector v3 Server:

NODE_ENV=development
PORT=3001
POSTGRES_URL=postgresql://localhost:5432/zerovector3
REDIS_URL=redis://localhost:6379/0
LANGSMITH_TRACING=true
OPENAI_API_KEY=your_openai_key
LOG_LEVEL=info

MCP Server:

# v2 Server Configuration
ZERO_VECTOR_BASE_URL=http://localhost:3000
ZERO_VECTOR_API_KEY=your_zero_vector_2_api_key

# v3 Server Configuration
ZERO_VECTOR_V3_BASE_URL=http://localhost:3001
ZERO_VECTOR_V3_API_KEY=your_zero_vector_3_api_key

# MCP Configuration
MCP_SERVER_NAME=zero-vector-mcp-v3
LOG_LEVEL=info

šŸ“Š Performance Characteristics

Vector Storage (v2 System)

  • Vector Storage: ~6MB per 1000 vectors (1536 dimensions)
  • Search Performance: <50ms for 10,000+ vector corpus
  • Memory Efficiency: 99.9% utilization of allocated buffer space
  • Throughput: 1000+ vectors/second insertion rate
  • Capacity: 349,525 vectors in 2GB configuration

Workflow Performance (v3 System)

  • Workflow Execution: <2s for standard conversations
  • Multi-Step Reasoning: <10s for complex reasoning chains
  • Memory Integration: <500ms for hybrid memory retrieval
  • Approval Processing: <1s for human approval workflows
  • Cache Performance: 95%+ cache hit ratio for repeated operations

šŸ”’ Security Features

  • Authentication: API key-based authentication with secure generation
  • Authorization: Role-based access control with granular permissions
  • Rate Limiting: Multiple rate limiting layers (global, per-key, per-endpoint)
  • Input Validation: Comprehensive request validation and sanitization
  • Security Headers: Helmet.js implementation with CSP policies
  • Audit Logging: Complete audit trail for all operations
  • Multi-Server Security: Coordinated security across v2 and v3 systems
  • Workflow Approval: Human-in-the-loop security for sensitive operations

šŸ¤ Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Add tests for new functionality
  5. Commit your changes (git commit -m 'Add amazing feature')
  6. Push to the branch (git push origin feature/amazing-feature)
  7. Open a Pull Request

Development Guidelines

  • Follow existing code style and patterns
  • Add comprehensive tests for new features
  • Update documentation for any API changes
  • Ensure all tests pass before submitting PR
  • Include performance considerations for vector operations
  • Test workflow integrations thoroughly
  • Consider human-approval scenarios for new features

šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ†˜ Support

Documentation

Troubleshooting

Connection Issues:

# Check Zero-Vector v2 server health
curl http://localhost:3000/health

# Check Zero-Vector v3 server health
curl http://localhost:3001/health

# Test MCP server connection
cd MCP && npm run test:connection

Workflow Issues:

# Check workflow status
cd MCP && node -e "console.log('Check workflow metrics via MCP tools')"

# Review workflow logs
tail -f zero-vector-3/server/logs/combined.log

Common Issues:

  • Ensure Node.js 18+ is installed
  • Verify API key configuration in MCP .env file
  • Check both Zero-Vector servers are running before starting MCP server
  • Ensure sufficient memory allocation (4GB+ recommended for v3.0)
  • Verify PostgreSQL and Redis are running for v3 workflows

Getting Help

  • GitHub Issues: Report bugs and feature requests
  • Discussions: Ask questions and share ideas
  • Wiki: Additional documentation and examples

Zero-Vector MCP v3.0 - Production-ready hybrid vector-graph AI memory system with advanced LangGraph workflow orchestration and multi-agent intelligence

Related Servers