Enable AI Agents to fix build failures from CircleCI.
Model Context Protocol (MCP) is a new, standardized protocol for managing context between large language models (LLMs) and external systems. In this repository, we provide an MCP Server for CircleCI.
This lets you use Cursor IDE, Windsurf, Copilot, or any MCP supported Client, to use natural language to accomplish things with CircleCI, e.g.:
Find the latest failed pipeline on my branch and get logs
https://github.com/CircleCI-Public/mcp-server-circleci/wiki#circleci-mcp-server-with-cursor-idehttps://github.com/user-attachments/assets/3c765985-8827-442a-a8dc-5069e01edb74
For NPX installation:
For Docker installation:
Add the following to your cursor MCP config:
{
"mcpServers": {
"circleci-mcp-server": {
"command": "npx",
"args": ["-y", "@circleci/mcp-server-circleci"],
"env": {
"CIRCLECI_TOKEN": "your-circleci-token",
"CIRCLECI_BASE_URL": "https://circleci.com" // Optional - required for on-prem customers only
}
}
}
}
Add the following to your cursor MCP config:
{
"mcpServers": {
"circleci-mcp-server": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "CIRCLECI_TOKEN",
"-e", "CIRCLECI_BASE_URL",
"circleci:mcp-server-circleci"
],
"env": {
"CIRCLECI_TOKEN": "your-circleci-token",
"CIRCLECI_BASE_URL": "https://circleci.com" // Optional - required for on-prem customers only
}
}
}
}
To install CircleCI MCP Server for VS Code in .vscode/mcp.json
:
{
// đź’ˇ Inputs are prompted on first server start, then stored securely by VS Code.
"inputs": [
{
"type": "promptString",
"id": "circleci-token",
"description": "CircleCI API Token",
"password": true
},
{
"type": "promptString",
"id": "circleci-base-url",
"description": "CircleCI Base URL",
"default": "https://circleci.com"
}
],
"servers": {
// https://github.com/ppl-ai/modelcontextprotocol/
"circleci-mcp-server": {
"type": "stdio",
"command": "npx",
"args": ["-y", "@circleci/mcp-server-circleci"],
"env": {
"CIRCLECI_TOKEN": "${input:circleci-token}",
"CIRCLECI_BASE_URL": "${input:circleci-base-url}"
}
}
}
}
To install CircleCI MCP Server for VS Code in .vscode/mcp.json
using Docker:
{
// đź’ˇ Inputs are prompted on first server start, then stored securely by VS Code.
"inputs": [
{
"type": "promptString",
"id": "circleci-token",
"description": "CircleCI API Token",
"password": true
},
{
"type": "promptString",
"id": "circleci-base-url",
"description": "CircleCI Base URL",
"default": "https://circleci.com"
}
],
"servers": {
// https://github.com/ppl-ai/modelcontextprotocol/
"circleci-mcp-server": {
"type": "stdio",
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "CIRCLECI_TOKEN",
"-e", "CIRCLECI_BASE_URL",
"circleci:mcp-server-circleci"
],
"env": {
"CIRCLECI_TOKEN": "${input:circleci-token}",
"CIRCLECI_BASE_URL": "${input:circleci-base-url}"
}
}
}
}
Add the following to your claude_desktop_config.json:
{
"mcpServers": {
"circleci-mcp-server": {
"command": "npx",
"args": ["-y", "@circleci/mcp-server-circleci"],
"env": {
"CIRCLECI_TOKEN": "your-circleci-token",
"CIRCLECI_BASE_URL": "https://circleci.com" // Optional - required for on-prem customers only
}
}
}
}
Add the following to your claude_desktop_config.json:
{
"mcpServers": {
"circleci-mcp-server": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "CIRCLECI_TOKEN",
"-e", "CIRCLECI_BASE_URL",
"circleci:mcp-server-circleci"
],
"env": {
"CIRCLECI_TOKEN": "your-circleci-token",
"CIRCLECI_BASE_URL": "https://circleci.com" // Optional - required for on-prem customers only
}
}
}
}
To find/create this file, first open your claude desktop settings. Then click on "Developer" in the left-hand bar of the Settings pane, and then click on "Edit Config"
This will create a configuration file at:
See the guide below for more information on using MCP servers with Claude Desktop: https://modelcontextprotocol.io/quickstart/user
After installing Claude Code, run the following command:
claude mcp add circleci-mcp-server -e CIRCLECI_TOKEN=your-circleci-token -- npx -y @circleci/mcp-server-circleci
After installing Claude Code, run the following command:
claude mcp add circleci-mcp-server -e CIRCLECI_TOKEN=your-circleci-token -e CIRCLECI_BASE_URL=https://circleci.com -- docker run --rm -i -e CIRCLECI_TOKEN -e CIRCLECI_BASE_URL circleci:mcp-server-circleci
See the guide below for more information on using MCP servers with Claude Code: https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/tutorials#set-up-model-context-protocol-mcp
Add the following to your windsurf mcp_config.json:
{
"mcpServers": {
"circleci-mcp-server": {
"command": "npx",
"args": ["-y", "@circleci/mcp-server-circleci"],
"env": {
"CIRCLECI_TOKEN": "your-circleci-token",
"CIRCLECI_BASE_URL": "https://circleci.com" // Optional - required for on-prem customers only
}
}
}
}
Add the following to your windsurf mcp_config.json:
{
"mcpServers": {
"circleci-mcp-server": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "CIRCLECI_TOKEN",
"-e", "CIRCLECI_BASE_URL",
"circleci:mcp-server-circleci"
],
"env": {
"CIRCLECI_TOKEN": "your-circleci-token",
"CIRCLECI_BASE_URL": "https://circleci.com" // Optional - required for on-prem customers only
}
}
}
}
See the guide below for more information on using MCP servers with windsurf: https://docs.windsurf.com/windsurf/mcp
To install CircleCI MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @CircleCI-Public/mcp-server-circleci --client claude
get_build_failure_logs
Retrieves detailed failure logs from CircleCI builds. This tool can be used in three ways:
Using Project Slug and Branch (Recommended Workflow):
Using CircleCI URLs:
Using Local Project Context:
The tool returns formatted logs including:
This is particularly useful for:
find_flaky_tests
Identifies flaky tests in your CircleCI project by analyzing test execution history. This leverages the flaky test detection feature described here: https://circleci.com/blog/introducing-test-insights-with-flaky-test-detection/#flaky-test-detection
This tool can be used in three ways:
Using Project Slug (Recommended Workflow):
Using CircleCI Project URL:
Using Local Project Context:
The tool returns detailed information about flaky tests, including:
This helps you:
get_latest_pipeline_status
Retrieves the status of the latest pipeline for a given branch. This tool can be used in three ways:
Using Project Slug and Branch (Recommended Workflow):
Using CircleCI Project URL:
Using Local Project Context:
The tool returns a formatted status of the latest pipeline:
Example output:
---
Workflow: build
Status: success
Duration: 5 minutes
Created: 4/20/2025, 10:15:30 AM
Stopped: 4/20/2025, 10:20:45 AM
---
Workflow: test
Status: running
Duration: unknown
Created: 4/20/2025, 10:21:00 AM
Stopped: in progress
This is particularly useful for:
get_job_test_results
Retrieves test metadata for CircleCI jobs, allowing you to analyze test results without leaving your IDE. This tool can be used in three ways:
Using Project Slug and Branch (Recommended Workflow):
Using CircleCI URL:
Using Local Project Context:
The tool returns detailed test result information:
This is particularly useful for:
Note: The tool requires that test metadata is properly configured in your CircleCI config. For more information on setting up test metadata collection, see: https://circleci.com/docs/collect-test-data/
config_helper
Assists with CircleCI configuration tasks by providing guidance and validation. This tool helps you:
The tool provides:
This helps you:
create_prompt_template
Helps generate structured prompt templates for AI-enabled applications based on feature requirements. This tool:
The tool provides:
This helps you:
recommend_prompt_template_tests
Generates test cases for prompt templates to ensure they produce expected results. This tool:
The tool provides:
This helps you:
list_followed_projects
Lists all projects that the user is following on CircleCI. This tool:
The tool returns a formatted list of projects, example output:
Projects followed:
1. my-project (projectSlug: gh/organization/my-project)
2. another-project (projectSlug: gh/organization/another-project)
This is particularly useful for:
Note: The projectSlug (not the project name) is required for many other CircleCI tools, and will be used for those tool calls after a project is selected.
run_pipeline
Triggers a pipeline to run. This tool can be used in three ways:
Using Project Slug and Branch (Recommended Workflow):
Using CircleCI URL:
Using Local Project Context:
The tool returns a link to monitor the pipeline execution.
This is particularly useful for:
rerun_workflow
Reruns a workflow from its start or from the failed job.
The tool returns the ID of the newly-created workflow, and a link to monitor the new workflow.
This is particularly useful for:
Clone the repository:
git clone https://github.com/CircleCI-Public/mcp-server-circleci.git
cd mcp-server-circleci
Install dependencies:
pnpm install
Build the project:
pnpm build
You can build the Docker container locally using:
docker build -t circleci:mcp-server-circleci .
This will create a Docker image tagged as circleci:mcp-server-circleci
that you can use with any MCP client.
To run the container:
docker run --rm -i -e CIRCLECI_TOKEN=your-circleci-token -e CIRCLECI_BASE_URL=https://circleci.com circleci:mcp-server-circleci
The easiest way to iterate on the MCP Server is using the MCP inspector. You can learn more about the MCP inspector at https://modelcontextprotocol.io/docs/tools/inspector
Start the development server:
pnpm watch # Keep this running in one terminal
In a separate terminal, launch the inspector:
pnpm inspector
Configure the environment:
CIRCLECI_TOKEN
to the Environment Variables section in the inspector UIhttps//circleci.com
Run the test suite:
pnpm test
Run tests in watch mode during development:
pnpm test:watch
For more detailed contribution guidelines, see CONTRIBUTING.md
GitLab API, enabling project management
Retrieving and analyzing issues from Sentry.io
Create crafted UI components inspired by the best 21st.dev design engineers.
Connect to any function, any language, across network boundaries using AgentRPC.
APIMatic MCP Server is used to validate OpenAPI specifications using APIMatic. The server processes OpenAPI files and returns validation summaries by leveraging APIMatic’s API.
Bring the full power of BrowserStack’s Test Platform to your AI tools, making testing faster and easier for every developer and tester on your team.
Flag features, manage company data, and control feature access using Bucket
Introspect and query your apps deployed to Convex.
Enable AI Agents to fix Playwright test failures reported to Currents.
Official MCP server for dbt (data build tool) providing integration with dbt Core/Cloud CLI, project metadata discovery, model information, and semantic layer querying capabilities.