Integrates with Google AI Studio/Gemini API for PDF to Markdown conversion and content generation.
A Model Context Protocol (MCP) server that integrates with Google AI Studio / Gemini API, providing content generation capabilities with support for files, conversation history, and system prompts.
GEMINI_API_KEY=your_api_key npx -y aistudio-mcp-server
npm install -g aistudio-mcp-server
GEMINI_API_KEY=your_api_key aistudio-mcp-server
Set your Google AI Studio API key as an environment variable:
export GEMINI_API_KEY=your_api_key_here
GEMINI_MODEL
: Gemini model to use (default: gemini-2.5-flash)GEMINI_TIMEOUT
: Request timeout in milliseconds (default: 300000 = 5 minutes)GEMINI_MAX_OUTPUT_TOKENS
: Maximum output tokens (default: 8192)GEMINI_MAX_FILES
: Maximum number of files per request (default: 10)GEMINI_MAX_TOTAL_FILE_SIZE
: Maximum total file size in MB (default: 50)GEMINI_TEMPERATURE
: Temperature for generation (0-2, default: 0.2)Example:
export GEMINI_API_KEY=your_api_key_here
export GEMINI_MODEL=gemini-2.5-flash
export GEMINI_TIMEOUT=600000 # 10 minutes
export GEMINI_MAX_OUTPUT_TOKENS=16384 # More output tokens
export GEMINI_MAX_FILES=5 # Limit to 5 files per request
export GEMINI_MAX_TOTAL_FILE_SIZE=100 # 100MB limit
export GEMINI_TEMPERATURE=0.7 # More creative responses
Generates content using Gemini with comprehensive support for files, conversation history, and system prompts. Supports various file types including images, PDFs, Office documents, and text files.
Parameters:
user_prompt
(string, required): User prompt for generationsystem_prompt
(string, optional): System prompt to guide AI behaviorfiles
(array, optional): Array of files to include in generation
path
or content
path
(string): Path to filecontent
(string): Base64 encoded file contenttype
(string, optional): MIME type (auto-detected from file extension)model
(string, optional): Gemini model to use (default: gemini-2.5-flash)temperature
(number, optional): Temperature for generation (0-2, default: 0.2). Lower values produce more focused responses, higher values more creative onesSupported file types (Gemini 2.5 models):
File limitations:
Basic example:
{
"user_prompt": "Analyze this image and describe what you see",
"files": [
{
"path": "/path/to/image.jpg"
}
]
}
PDF to Markdown conversion:
{
"user_prompt": "Convert this PDF to well-formatted Markdown, preserving structure and formatting. Return only the Markdown content.",
"files": [
{
"path": "/path/to/document.pdf"
}
]
}
With system prompt:
{
"system_prompt": "You are a helpful document analyst specialized in technical documentation",
"user_prompt": "Please provide a detailed explanation of the authentication methods shown in this document",
"files": [
{"path": "/api-docs.pdf"}
]
}
Multiple files example:
{
"user_prompt": "Compare these documents and images",
"files": [
{"path": "/document.pdf"},
{"path": "/chart.png"},
{"content": "base64encodedcontent", "type": "image/jpeg"}
]
}
To convert PDF files to Markdown format, use the generate_content
tool with an appropriate prompt:
{
"user_prompt": "Convert this PDF to well-formatted Markdown, preserving structure, headings, lists, and formatting. Include table of contents if the document has sections.",
"files": [
{
"path": "/path/to/document.pdf"
}
]
}
Analyze images, charts, diagrams, or photos with detailed descriptions:
{
"system_prompt": "You are an expert image analyst. Provide detailed, accurate descriptions of visual content.",
"user_prompt": "Analyze this image and describe what you see. Include details about objects, people, text, colors, and composition.",
"files": [
{
"path": "/path/to/image.jpg"
}
]
}
For screenshots or technical diagrams:
{
"user_prompt": "Describe this system architecture diagram. Explain the components and their relationships.",
"files": [
{
"path": "/architecture-diagram.png"
}
]
}
Generate transcripts from audio files:
{
"system_prompt": "You are a professional transcription service. Provide accurate, well-formatted transcripts.",
"user_prompt": "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs.",
"files": [
{
"path": "/meeting-recording.mp3"
}
]
}
For interview or meeting transcripts:
{
"user_prompt": "Transcribe this interview and provide a summary of key points discussed.",
"files": [
{
"path": "/interview.wav"
}
]
}
Add this server to your MCP client configuration:
{
"mcpServers": {
"aistudio": {
"command": "npx",
"args": ["-y", "aistudio-mcp-server"],
"env": {
"GEMINI_API_KEY": "your_api_key_here",
"GEMINI_MODEL": "gemini-2.5-flash",
"GEMINI_TIMEOUT": "600000",
"GEMINI_MAX_OUTPUT_TOKENS": "16384",
"GEMINI_MAX_FILES": "10",
"GEMINI_MAX_TOTAL_FILE_SIZE": "50",
"GEMINI_TEMPERATURE": "0.2"
}
}
}
}
Make sure you have Node.js 20.0.0 or higher installed.
npm install
npm run build
GEMINI_API_KEY=your_api_key npm run dev
MIT
Programmatically access and parse NOAA Electronic Navigational Charts (ENC) in S-57 format.
An MCP server for interacting with Web3 and EVM-compatible chains.
Create and modify wireframes in the Frame0 app through natural language prompts.
A Swift-based MCP server that integrates with Xcode to enhance AI development workflows.
Generates Supra Move contracts and TypeScript SDK code.
An executable server for running MCP services, featuring tool chaining, multi-service management, and plugin support.
An MCP server for interacting with the Tatara blockchain ecosystem. Requires configuration for the Tatara RPC endpoint and a wallet private key.
Query information about dependencies in a Ruby project's Gemfile.
A template for deploying a remote, auth-less MCP server on Cloudflare Workers.
A Next.js-based MCP server with OAuth 2.1 authentication support using Google as the default provider. Requires a PostgreSQL database and optionally Redis for SSE transport.