An LLM-powered server for automating unit, integration, E2E, and API tests.
A comprehensive, intelligent, and extensible testing automation platform powered by Large Language Models. Test Automator streamlines the process of generating, executing, and analyzing various types of software tests (unit, integration, end-to-end, API) for both web UI and backend logic.
# Clone the repository
git clone https://github.com/your-repo/test-automator.git
cd test-automator
# Create virtual environment
python -m venv .venv
.venv\\Scripts\\activate # Windows
# or
source .venv/bin/activate # WSL/Linux
# Install dependencies
pip install -e .
# Install Playwright browsers
playwright install
# Clone and setup
git clone https://github.com/your-repo/test-automator.git
cd test-automator
# Create virtual environment
python3.11 -m venv .venv
source .venv/bin/activate
# Install dependencies
pip install -e .
# Install Playwright browsers
playwright install
# Windows
set GOOGLE_API_KEY=your_api_key_here
# Linux/macOS/WSL
export GOOGLE_API_KEY=your_api_key_here
claude mcp add test-automator "/path/to/test-automator/.venv/bin/test-automator" -e "GOOGLE_API_KEY=your_api_key"
Add to your Claude Code configuration (~/.claude.json
):
{
"projects": {
"/your/project/path": {
"mcpServers": {
"test-automator": {
"type": "stdio",
"command": "/path/to/test-automator/.venv/bin/test-automator",
"env": {
"GOOGLE_API_KEY": "your_api_key_here"
}
}
}
}
}
}
C:/path/to/test-automator/.venv/Scripts/test-automator.exe
/home/username/test-automator/.venv/bin/test-automator
generate_tests(code_path, test_type="all")
Generate intelligent tests for your codebase:
# Generate all test types
generate_tests("/path/to/your/code", "all")
# Generate specific test type
generate_tests("/path/to/your/api.py", "unit")
generate_tests("/path/to/your/project", "integration")
generate_tests("/path/to/your/webapp", "e2e")
generate_tests("/path/to/your/api", "api")
run_tests(test_type="all", target_path="tests/")
Execute generated tests:
# Run all tests
run_tests("all", "/path/to/tests")
# Run specific test type
run_tests("unit", "/path/to/tests")
analyze_test_report(report_path)
Get LLM-powered insights from test results:
analyze_test_report("/path/to/test_results.xml")
# 1. Generate comprehensive tests
generate_tests("/home/user/my-project", "all")
# 2. Run the tests
run_tests("all", "/home/user/my-project/tests")
# 3. Analyze results
analyze_test_report("/home/user/my-project/tests/results/unit_results.xml")
test-automator/
βββ test_automator/
β βββ __init__.py
β βββ mcp_server.py # Main MCP server with tools
β βββ test_generator.py # LLM-powered test generation
β βββ test_runner.py # Cross-platform test execution
β βββ report_analyzer.py # AI-enhanced report analysis
βββ pyproject.toml # Package configuration
βββ README.md # This file
# Set the environment variable
export GOOGLE_API_KEY="your_api_key_here"
# Or add to shell profile
echo 'export GOOGLE_API_KEY="your_api_key"' >> ~/.bashrc
# Install browsers
playwright install
# Install system dependencies (Linux)
playwright install-deps
# Ensure script execution is enabled
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
# Check virtual environment activation
.venv\\Scripts\\activate
# Install X11 server for Windows
# Add to ~/.bashrc:
export DISPLAY=:0.0
git checkout -b feature/amazing-feature
)git commit -m 'Add amazing feature'
)git push origin feature/amazing-feature
)This project is licensed under the MIT License - see the LICENSE file for details.
A Model Context Protocol (MCP) server for square
An example of a remote MCP server deployable on Cloudflare Workers without authentication.
Execute developer-defined bash scripts in a Dockerized environment for coding agents.
Integrates the Korea Meteorological Administration's public weather API to provide climate data.
Server for advanced AI-driven video editing, semantic search, multilingual transcription, generative media, voice cloning, and content moderation.
Work on your code with JetBrains IDEs
Create, validate, and render diagrams from D2 (Declarative Diagramming) code into SVG and PNG formats.
Fetches Rust crate READMEs, metadata, dependencies, and usage information from crates.io.
A Docker Compose-based collection of MCP servers for LLM workflows, featuring centralized configuration and management scripts.
Interact with the JFrog Platform API for repository management, build tracking, and release lifecycle management.