Test Automator
An LLM-powered server for automating unit, integration, E2E, and API tests.
š¤ Test Automator
A comprehensive, intelligent, and extensible testing automation platform powered by Large Language Models. Test Automator streamlines the process of generating, executing, and analyzing various types of software tests (unit, integration, end-to-end, API) for both web UI and backend logic.
⨠Features
š§ LLM-Powered Test Generation
- Intelligent Analysis: Automatically analyzes your codebase to understand structure and dependencies
- Smart Test Cases: Generates comprehensive test scenarios including edge cases and error conditions
- Context-Aware: Understands your code patterns and generates idiomatic tests
- Multi-Language Support: Optimized for Python with extensible architecture
š§ Comprehensive Test Types
š¬ Unit Testing
- Analyzes individual functions, methods, and classes
- Generates pytest test functions with proper fixtures
- Includes positive, negative, and edge case scenarios
- Handles both sync and async code patterns
š Integration Testing
- Tests interactions between different modules and services
- Simulates real component interactions
- Uses appropriate mocking strategies
- Tests configuration and initialization flows
š End-to-End (E2E) Testing
- Browser automation using Playwright and browser-use
- Simulates real user interactions
- Tests complete user workflows
- Captures screenshots and generates visual reports
š API Testing
- Comprehensive HTTP endpoint testing
- Request/response validation
- Authentication and authorization testing
- Performance and timeout testing
š Intelligent Reporting
- LLM-Enhanced Analysis: AI-powered insights from test results
- Multi-Format Support: XML, JSON, and HTML report parsing
- Actionable Recommendations: Specific suggestions for improvement
- Risk Assessment: Identifies critical areas needing attention
š ļø Installation
Prerequisites
- Python 3.11+
- Google API Key (for Gemini LLM)
- Claude Code or Cursor with MCP support
- Git
Quick Install
Windows (Native or WSL)
# Clone the repository
git clone https://github.com/your-repo/test-automator.git
cd test-automator
# Create virtual environment
python -m venv .venv
.venv\\Scripts\\activate # Windows
# or
source .venv/bin/activate # WSL/Linux
# Install dependencies
pip install -e .
# Install Playwright browsers
playwright install
Linux/macOS
# Clone and setup
git clone https://github.com/your-repo/test-automator.git
cd test-automator
# Create virtual environment
python3.11 -m venv .venv
source .venv/bin/activate
# Install dependencies
pip install -e .
# Install Playwright browsers
playwright install
āļø Configuration
1. Get Google API Key
- Visit Google AI Studio
- Create a new API key
- Set environment variable:
# Windows set GOOGLE_API_KEY=your_api_key_here # Linux/macOS/WSL export GOOGLE_API_KEY=your_api_key_here
2. Configure Claude Code
Option A: CLI Configuration
claude mcp add test-automator "/path/to/test-automator/.venv/bin/test-automator" -e "GOOGLE_API_KEY=your_api_key"
Option B: Manual Configuration
Add to your Claude Code configuration (~/.claude.json):
{
"projects": {
"/your/project/path": {
"mcpServers": {
"test-automator": {
"type": "stdio",
"command": "/path/to/test-automator/.venv/bin/test-automator",
"env": {
"GOOGLE_API_KEY": "your_api_key_here"
}
}
}
}
}
}
Windows Path Examples
- Windows:
C:/path/to/test-automator/.venv/Scripts/test-automator.exe - WSL:
/home/username/test-automator/.venv/bin/test-automator
š Usage
MCP Tools Available
generate_tests(code_path, test_type="all")
Generate intelligent tests for your codebase:
# Generate all test types
generate_tests("/path/to/your/code", "all")
# Generate specific test type
generate_tests("/path/to/your/api.py", "unit")
generate_tests("/path/to/your/project", "integration")
generate_tests("/path/to/your/webapp", "e2e")
generate_tests("/path/to/your/api", "api")
run_tests(test_type="all", target_path="tests/")
Execute generated tests:
# Run all tests
run_tests("all", "/path/to/tests")
# Run specific test type
run_tests("unit", "/path/to/tests")
analyze_test_report(report_path)
Get LLM-powered insights from test results:
analyze_test_report("/path/to/test_results.xml")
Example Workflow
# 1. Generate comprehensive tests
generate_tests("/home/user/my-project", "all")
# 2. Run the tests
run_tests("all", "/home/user/my-project/tests")
# 3. Analyze results
analyze_test_report("/home/user/my-project/tests/results/unit_results.xml")
šÆ Advanced Features
Large Codebase Support (100k-200k lines)
- Modular Analysis: Processes code in manageable chunks
- Incremental Testing: Generates tests incrementally for better performance
- Parallel Execution: Supports pytest-xdist for parallel test runs
- Smart Filtering: Focuses on testable units to avoid overwhelming LLM
Cross-Platform Compatibility
- Windows Native: Full support with proper path handling
- WSL Integration: Seamless Windows Subsystem for Linux support
- Linux/macOS: Native Unix support
- Event Loop Handling: Platform-specific async optimizations
Performance Optimizations
- Async Operations: Non-blocking test execution
- Batch Processing: Efficient handling of multiple test files
- Resource Management: Proper cleanup and memory management
- Timeout Handling: Configurable timeouts for different test types
š Project Structure
test-automator/
āāā test_automator/
ā āāā __init__.py
ā āāā mcp_server.py # Main MCP server with tools
ā āāā test_generator.py # LLM-powered test generation
ā āāā test_runner.py # Cross-platform test execution
ā āāā report_analyzer.py # AI-enhanced report analysis
āāā pyproject.toml # Package configuration
āāā README.md # This file
š§ Troubleshooting
Common Issues
"GOOGLE_API_KEY not found"
# Set the environment variable
export GOOGLE_API_KEY="your_api_key_here"
# Or add to shell profile
echo 'export GOOGLE_API_KEY="your_api_key"' >> ~/.bashrc
"Playwright browsers not found"
# Install browsers
playwright install
# Install system dependencies (Linux)
playwright install-deps
Windows Permission Issues
# Ensure script execution is enabled
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
# Check virtual environment activation
.venv\\Scripts\\activate
WSL Display Issues (for E2E tests)
# Install X11 server for Windows
# Add to ~/.bashrc:
export DISPLAY=:0.0
š¤ Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
š License
This project is licensed under the MIT License - see the LICENSE file for details.
š Acknowledgments
- Gemini LLM: Google's powerful language model for intelligent test generation
- Playwright: Cross-browser automation framework
- pytest: Robust Python testing framework
- MCP Protocol: Model Context Protocol for seamless AI integration
- Claude Code: AI-powered development environment
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Image Tools MCP
Retrieve image dimensions and compress images from URLs or local files using Tinify and Figma APIs.
Cloudflare MCP Server
An example MCP server designed for easy deployment on Cloudflare Workers, operating without authentication.
Vibes
Transforms Claude Desktop into a conversational development environment using distributed MCP servers.
Windows CLI
Interact with Windows command-line interfaces like PowerShell, CMD, Git Bash, and WSL.
Apifox
A TypeScript MCP server to access Apifox API data via Stdio.
Dify Workflow
A tool server for integrating Dify Workflows via the Model Context Protocol (MCP).
CodeSeeker
Advanced code search and transformation powered by ugrep and ast-grep for modern development workflows.
bevy_brp_mcp
An MCP server for AI coding assistants to control, inspect, and modify Bevy applications using the Bevy Remote Protocol (BRP).
Agent Forge
A platform for creating and managing AI agents with specific personalities and simulating their responses. Requires a DeepSeek API key.
Mong MCP Server
A moby-like random name generator for use with tools like Claude Desktop and VS Code Copilot Agent.