Behavioural Prediction MCP
The Behavioural Prediction MCP Server provides AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.
đ§ Behavioural Prediction MCP Server
MCP Server Name: Behavioural Prediction MCP
Category: Web3 / Security / DeFi Analytics
Status: Public tools â Private backend
Access: By request (API key)
Server URL: [https://prediction.mcp.chainaware.ai/]
Repository: [https://github.com/ChainAware/behavioral-prediction-mcp]
đ Description
The Behavioural Prediction MCP Server provides AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.
Developers and platforms can integrate these tools through the MCP protocol to safeguard DeFi users, monitor liquidity risks, and score wallet or contract trustworthiness.
All tools follow the Model Context Protocol (MCP) and can be consumed via MCP-compatible clients.
âď¸ Available Tools
1. Predictive Fraud Detection Tool
ID: predictive_fraud
Description: This AIâpowered algorithm forecasts the likelihood of fraudulent activity on a given wallet address before it happens (â98% accuracy), and performs AML/AntiâMoneyâLaundering checks. Use this when your user wants a risk assessment or earlyâwarning on a blockchain address.
âĄď¸ Example Use Cases:
⢠Is it safe to intercant with vitalik.eth ?
⢠What is the fraudulent status of this address ?
⢠Is my new wallet at risk of being used for fraud?
Inputs:
| Name | Type | Required | Description |
|---|---|---|---|
apiKey | string | â | API key for authentication |
network | string | â | Blockchain network (ETH, BNB,POLYGON,TON,BASE, TRON, HAQQ) |
walletAddress | string | â | The wallet address to evaluate |
Outputs (JSON):
{
"message": "string", // Humanâreadable status message
"walletAddress": "string", // hex address
"status": "Fraud", // Fraudelent status (Fraud,Not Fraud,New Address)
"probabilityFraud": "0.00â1.00", // Decimal probability
"token": "string", //
"lastChecked": "ISOâ8601 timestamp",
"forensic_details": { // Deep forensic breakdown
/* ...other metrics... */
},
"createdAt": "ISOâ8601 timestamp",
"updatedAt": "ISOâ8601 timestamp"
}
Error cases:
⢠`403 Unauthorized` â invalid `apiKey`
⢠`400 Bad Request` â malformed `network` or `walletAddress`
⢠`500 Internal Server Error` â temporary downstream failure
2. Predictive Behaviour Analysis Tool
ID: predictive_behaviour
Description: This AIâdriven engine projects what a wallet address intentions or what address is likely to do next, profiles its past onâchain history, and recommends personalized actions.
Use this when you need:
⢠Nextâbestâaction predictions and intentions(âWill this address deposit, trade, or stake?â)
⢠A riskâtolerance and experience profile
⢠Category segmentation (e.g. NFT, DeFi, Bridge usage)
⢠Custom recommendations based on historical patterns
âĄď¸ Example Use Cases:
⢠âWhat will this address do next?â
⢠âIs the user highârisk or experienced?â
⢠âRecommend the best DeFi strategies for 0x1234... on ETH network.â
Inputs:
| Name | Type | Required | Description |
|---|---|---|---|
apiKey | string | â | API key for authentication |
network | string | â | Blockchain network (ETH, BNB,BASE,HAQQ) |
walletAddress | string | â | The wallet address to evaluate |
Outputs (JSON):
{
"message": "string", // e.g. âSuccessâ or error text
"walletAddress": "string", // echoed input
"status": "string", // Fraudelent status (Fraud,Not Fraud,New Address)
"probabilityFraud": "0.00â1.00", // decimal fraud score
"lastChecked": "ISOâ8601 timestamp", // e.g. â2025â01â03T16:19:13.000Zâ
"forensic_details": { /* dict of forensic metrics */ },
"categories": [ { "Category":"string", "Count":int }, ⌠],
"riskProfile": [ { "Category":"string", "Balance_age":float }, ⌠],
"segmentInfo": "JSONâstring of segment counts",
"experience": { "Type":"Experience", "Value":int },
"intention": {
"Type":"Intentions",
"Value": { "Prob_Trade":"High", "Prob_Stake":"Medium", ⌠}
},
"protocols": [ { "Protocol":"string","Count":int }, ⌠],
"recommendation": { "Type":"Recommendation", "Value":[ "string", ⌠] },
"createdAt": "ISOâ8601 timestamp",
"updatedAt": "ISOâ8601 timestamp"
}
Error cases:
⢠`403 Unauthorized` â invalid `apiKey`
⢠`400 Bad Request` â malformed `network` or `walletAddress`
⢠`500 Internal Server Error` â temporary downstream failure
3. Predictive RugâPull Detection Tool
ID: predictive_rug_pull
Description: This AIâpowered engine forecasts which liquidity pools or contracts are likely to perform a ârug pullâ in the future. Use this when you need to warn users before they deposit into risky pools or to monitor smartâcontract security on-chain.
âĄď¸ Example Use Cases:
⢠âWill this new DeFi pool rugâpull if I stake my assets?â
⢠âMonitor my LP position for potential future exploits.â
Inputs:
| Name | Type | Required | Description |
|---|---|---|---|
apiKey | string | â | API key for authentication |
network | string | â | Blockchain network (ETH, BNB, BASE, HAQQ) |
walletAddress | string | â | Smart contract or liquidity pool address |
Outputs (JSON):
{
"message": "Success",
"contractAddress": "0x1234...",
"status": "Fraud",
"probabilityFraud": 0.87,
"lastChecked": "2025-10-25T12:45:00Z",
"forensic_details": { /* dict of onâchain metrics */ },
"createdAt": "2025-10-25T12:45:00Z",
"updatedAt": "2025-10-25T12:45:00Z"
}
Error cases:
⢠`403 Unauthorized` â invalid `apiKey`
⢠`400 Bad Request` â malformed `network` or `walletAddress`
⢠`500 Internal Server Error` â temporary downstream failure
đ§ Example Client Usage
Node.js Example
import { MCPClient } from "mcp-client";
const client = new MCPClient("https://prediction.mcp.chainaware.ai/");
const result = await client.call("predictive_rug_pull", {
apiKey: "your_api_key",
network: "BNB",
walletAddress: "0x1234..."
});
console.log(result);
Python Example
from mcp_client import MCPClient
client = MCPClient("https://prediction.mcp.chainaware.ai/")
res = client.call("chat", {"query": "What is the rug pull risk of 0x1234?"})
print(res)
Service Configuration:
"type": "http",
"config": {
"mcpServers": {
"behavioural_prediction_mcp": {
"type": "http",
"url": "https://prediction.mcp.chainaware.ai/sse",
"description": "The Behavioural Prediction MCP Server provides AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.",
"headers":{
"x-api-key":""
},
"params":{
"walletAddress":"",
"network":""
},
"auth": {
"type": "api_key",
"header": "X-API-Key"
}
}
}
}
}
đ Integration Notes
- Compatible with all MCP clients (Node, Python, Browser)
- Uses Server-Sent Events (SSE) for real-time responses
- JSON schemas match MCP spec
- Rate limits may apply
- API key required for production endpoints
đ Access Policy
The MCP server requires an API key for production usage. To request access:
- You can subscribe to listed available plans via: https://chainaware.ai/pricing
đ§ž License
MIT (for client examples). Server implementation and backend logic are proprietary and remain private.
Related Servers
Remote MCP Server (Authless)
An example of a remote MCP server deployable on Cloudflare Workers, without authentication.
Next.js MCP Server
A Next.js-based MCP server with OAuth 2.1 authentication support using Google as the default provider. Requires a PostgreSQL database and optionally Redis for SSE transport.
Mermaid
Generate mermaid diagram and chart with AI MCP dynamically.
Tauri MCP Server
A server for testing and interacting with Tauri v2 applications, providing tools for process management, window manipulation, and debugging.
Bucket
Flag features, manage company data, and control feature access using Bucket.
Dify Server
Integrates the Dify AI API to generate Ant Design business component code. Supports text, image inputs, and streaming responses.
Gemini CLI RAG MCP
A RAG-based Q&A server using a vector store built from Gemini CLI documentation.
Mermaid MCP Server
Converts Mermaid diagrams to PNG or SVG images.
NSAF MCP Server
An MCP server for the Neuro-Symbolic Autonomy Framework (NSAF), enabling AI assistants to interact with the framework.
MCP ZAP Server
Exposes OWASP ZAP as an MCP server, enabling AI agents to orchestrate security scans, import OpenAPI specs, and generate reports.