Airplane.Live MCP Server

MCP server that connects to the Airplanes.live API to provide real-time flight and aircraft data for analysis or visualization.

āœˆļø Airplane Tracker MCP Server

Python MCP License API

Airplane Tracker Banner

šŸŽÆ Overview

This MCP server integrates with the airplanes.live API to provide real-time aircraft tracking capabilities to Claude Desktop. Track flights, find aircraft by callsign, registration, or position - all directly from Claude!

āš ļø Important Notice - Terms of Use

šŸ“– Educational and Non-Commercial Use Only

This project uses the airplanes.live API which is provided for educational and non-commercial purposes only. Please respect their terms of service.

šŸ“‹ Usage Guidelines:

  • āœ… Educational projects - Learning and research
  • āœ… Personal use - Non-commercial tracking
  • āœ… Open source contributions - Community development
  • āŒ Commercial applications - Business/profit purposes
  • āŒ High-volume requests - Respect rate limits

šŸ›”ļø Disclaimer:

The author of this MCP server does not assume any responsibility for the use of this software. This is a community contribution intended for educational purposes and to demonstrate MCP server development. Users are responsible for complying with airplanes.live API terms and any applicable regulations.

🌐 Respect for Existing Services:

This project does NOT intend to replace or compete with the official airplanes.live globe viewer. The official globe is the primary and recommended way to visualize flight data. This MCP server is designed as a complementary educational tool for Claude Desktop integration and MCP development learning.

šŸ“– Full API Terms: https://airplanes.live/api-guide/
šŸŒ Official Globe Viewer: https://globe.airplanes.live

šŸ“ø Screenshots

Claude Desktop with Airplane Tracker Real-time airplane tracking in Claude Desktop

šŸš€ Features

  • šŸ” Search by Callsign - Find specific flights (e.g., UAL123)
  • šŸ“‹ Registration Lookup - Track by tail number (e.g., N12345)
  • šŸŽÆ Position-based Search - Aircraft near coordinates
  • šŸ·ļø Hex ID Search - Mode S transponder codes
  • šŸ›”ļø Military Aircraft - Tracked military flights
  • 🚁 LADD Aircraft - Law enforcement tracking
  • ⭐ PIA Aircraft - Private/Interesting aircraft
  • šŸ“” Squawk Codes - Emergency and special codes

Various API search examples

šŸ—ļø Architecture

šŸ”§ Components

  • šŸ Python MCP Server - Async server implementation
  • 🌐 MCP Framework - Modern server architecture
  • ⚔ httpx Client - High-performance HTTP requests
  • šŸ“Š Data Formatter - Clean, readable aircraft information
  • šŸ”Œ Claude Integration - Direct MCP protocol support

šŸ“Š Data Flow

graph TD
    A[Claude Desktop] --> B[MCP Protocol]
    B --> C[airplane_server.py]
    C --> D[API Functions]
    D --> E[airplanes.live API]
    E --> F[Aircraft Data]
    F --> G[Formatted Response]
    G --> A

System architecture and data flow

šŸš€ Quick Start

šŸ“‹ Prerequisites

  • šŸ Python 3.8+
  • šŸ’» Claude Desktop
  • 🌐 Internet connection

⚔ Installation

# 1. Clone the repository
git clone https://github.com/Bellaposa/airplanes-live-mcp.git
cd airplanes-live-mcp

# 2. Create virtual environment (REQUIRED!)
python -m venv .venv

# 3. Activate virtual environment
# macOS/Linux:
source .venv/bin/activate
# Windows:
.venv\Scripts\activate

# 4. Install dependencies
pip install -r requirements.txt

# 5. Test the server
python airplane_server.py

āš ļø Common Issues & Solutions

šŸ”„ Virtual Environment is MANDATORY!

  • If you skip step 2-3, you'll get ModuleNotFoundError: No module named 'httpx'
  • Claude Desktop needs the full path to the venv Python, not system Python
  • Without venv, dependencies aren't isolated and things break

🪟 Windows Users:

  • Virtual env creates .venv\Scripts\ folder (not .venv\bin\)
  • Use Scripts\python.exe in Claude config, not bin/python
  • Always use double backslashes \\ in JSON paths

šŸ Python Path Issues:

  • Make sure Python 3.8+ is installed: python --version
  • If python doesn't work, try python3 or py
  • Virtual environment MUST exist before configuring Claude Desktop

🐳 Docker Installation (Alternative)

Skip Python setup headaches - use Docker instead!

šŸ“‹ Prerequisites

  • 🐳 Docker Desktop installed and running
  • šŸ’» Claude Desktop

⚔ Docker Setup

# 1. Clone the repository
git clone https://github.com/Bellaposa/airplanes-live-mcp.git
cd airplanes-live-mcp

# 2. Build Docker image
docker build -t airplane-mcp-server .

# 3. Test the container
docker run --rm -it airplane-mcp-server python airplane_server.py

āš™ļø Claude Desktop Configuration for Docker

šŸŽ macOS/Linux with Docker

Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "airplanes-live": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i", 
        "airplane-mcp-server", 
        "python", "airplane_server.py"
      ]
    }
  }
}

🪟 Windows with Docker

Add to %APPDATA%\Claude\claude_desktop_config.json:

{
  "mcpServers": {
    "airplanes-live": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i", 
        "airplane-mcp-server", 
        "python", "airplane_server.py"
      ]
    }
  }
}

šŸ”„ Docker Commands Reference

# Build the image
docker build -t airplane-mcp-server .

# Run interactively for testing
docker run --rm -it airplane-mcp-server bash

# Check if image exists
docker images | grep airplane-mcp-server

# Remove image if needed
docker rmi airplane-mcp-server

# View container logs (if running detached)
docker logs <container_id>

āœ… Docker Advantages

  • šŸš€ No Python setup required - Everything pre-configured
  • šŸ”’ Isolated environment - No dependency conflicts
  • šŸŒ Works everywhere - Same setup on Windows/Mac/Linux
  • šŸ“¦ Easy updates - Just rebuild the image
  • šŸ›”ļø Consistent behavior - Eliminates "works on my machine"

āš ļø Docker Troubleshooting

Problem: "docker: command not found"

# Install Docker Desktop first
# macOS: https://docs.docker.com/desktop/install/mac-install/
# Windows: https://docs.docker.com/desktop/install/windows-install/
# Linux: https://docs.docker.com/desktop/install/linux-install/

Problem: "Cannot connect to Docker daemon"

# Start Docker Desktop application
# Wait for Docker to fully start (green icon)

Problem: "Permission denied" (Linux)

# Add user to docker group
sudo usermod -aG docker $USER
# Log out and back in, or:
newgrp docker

Problem: Image build fails

# Clean Docker cache
docker system prune -a
# Try building again
docker build --no-cache -t airplane-mcp-server .

šŸŽÆ Even Easier: Docker Compose

For the simplest setup, use Docker Compose:

# 1. Clone and enter directory
git clone https://github.com/Bellaposa/airplanes-live-mcp.git
cd airplanes-live-mcp

# 2. Build and run with one command
docker-compose up --build

# 3. In another terminal, test the server
docker-compose exec airplane-mcp-server python airplane_server.py

Docker Compose Claude Configuration:

{
  "mcpServers": {
    "airplanes-live": {
      "command": "docker-compose", 
      "args": [
        "-f", "/path/to/airplanes-live-mcp/docker-compose.yml",
        "exec", "-T", "airplane-mcp-server", 
        "python", "airplane_server.py"
      ],
      "cwd": "/path/to/airplanes-live-mcp"
    }
  }
}

🐳 How to Use with Claude Desktop

Method 1: Simple Docker Run

Configuration for all platforms:

{
  "mcpServers": {
    "airplanes-live": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i", 
        "airplane-mcp-server", 
        "python", "airplane_server.py"
      ]
    }
  }
}

Method 2: Docker Compose (Advanced)

Configuration with full paths:

{
  "mcpServers": {
    "airplanes-live": {
      "command": "docker-compose",
      "args": [
        "-f", "/full/path/to/your/airplanes-live-mcp/docker-compose.yml",
        "exec", "-T", "airplane-mcp-server", 
        "python", "airplane_server.py"
      ],
      "cwd": "/full/path/to/your/airplanes-live-mcp"
    }
  }
}

Complete Docker Setup Steps:

# 1. Clone and build
git clone https://github.com/Bellaposa/airplanes-live-mcp.git
cd airplanes-live-mcp
docker build -t airplane-mcp-server .

# 2. Configure Claude Desktop with Method 1 (above)

# 3. Restart Claude Desktop completely

# 4. Test with: "Show me aircraft near New York"

šŸŽÆ Docker vs Python Comparison:

MethodProsConsBest For
Dockerāœ… No Python setupāœ… Works everywhereāœ… IsolatedāŒ Requires DockerāŒ Slight overheadBeginners, Windows users
Pythonāœ… Direct executionāœ… Easy debuggingāœ… No Docker neededāŒ Manual Python setupāŒ OS-specific issuesDevelopers, experienced users

Docker Compose Commands:

# Start services in background
docker-compose up -d

# View logs
docker-compose logs airplane-mcp-server

# Stop services
docker-compose down

# Rebuild and restart
docker-compose up --build

### āš™ļø Claude Desktop Configuration

#### šŸŽ **macOS/Linux Configuration**

Add to `~/Library/Application Support/Claude/claude_desktop_config.json` (macOS) or `~/.config/claude-desktop/config.json` (Linux):

```json
{
  "mcpServers": {
    "airplanes-live": {
      "command": "/path/to/airplanes-live-mcp/.venv/bin/python",
      "args": ["/path/to/airplanes-live-mcp/airplane_server.py"],
      "env": {
        "PYTHONPATH": "/path/to/airplanes-live-mcp"
      }
    }
  }
}

🪟 Windows Configuration

Add to %APPDATA%\Claude\claude_desktop_config.json:

{
  "mcpServers": {
    "airplanes-live": {
      "command": "C:\\Users\\YourUsername\\airplanes-live-mcp\\.venv\\Scripts\\python.exe",
      "args": ["C:\\Users\\YourUsername\\airplanes-live-mcp\\airplane_server.py"],
      "env": {
        "PYTHONPATH": "C:\\Users\\YourUsername\\airplanes-live-mcp"
      }
    }
  }
}

āš ļø Important Windows Notes:

  • Use Scripts\\python.exe (not bin/python)
  • Replace YourUsername with your actual Windows username
  • Use double backslashes \\ in paths
  • Make sure the virtual environment is created with python -m venv .venv

Claude Desktop configuration

šŸŽ® Usage Examples

Search by Callsign

šŸ” Find flight UAL123

Near Position Search

šŸ“ Show aircraft near 40.7128, -74.0060 within 50nm

Military Aircraft

šŸ›”ļø Show all military aircraft

šŸ”§ Key Design Decisions

1. Async Implementation

All tools use async to handle multiple requests efficiently:

@mcp.tool()
async def aircraft_near_position(latitude: str = "", longitude: str = "", radius: str = "250") -> str:

This allows the server to handle concurrent requests without blocking.

2. String-Based Parameters

All parameters are strings because MCP protocols work best with simple types:

# Correct
def tool(param: str = "") -> str:

# Avoid
def tool(param: Optional[int] = None) -> str:

3. Error Handling

Every tool includes comprehensive error handling:

try:
    # Main logic
except ValueError:
    return f"āŒ Error: Invalid input"
except Exception as e:
    return f"āŒ Error: {str(e)}"

4. Data Formatting

The format_aircraft_data() function provides consistent, readable output:

def format_aircraft_data(aircraft_data):
    # Handles both single aircraft and lists
    # Formats all available fields with emoji indicators
    # Returns human-readable strings

5. API Wrapper

The make_api_request() function centralizes HTTP logic:

async def make_api_request(endpoint):
    async with httpx.AsyncClient(timeout=15) as client:
        url = f"{API_BASE_URL}{endpoint}"
        response = await client.get(url)
        response.raise_for_status()
        return response.json()

This approach:

  • Centralizes error handling
  • Manages timeouts
  • Logs all requests
  • Makes it easy to add authentication later

Tool Reference

aircraft_by_hex(hex_id: str = "")

Purpose: Search for aircraft by Mode S hex identifier

Input: Comma-separated hex IDs (e.g., "45211e,45212f")

Returns: List of matching aircraft with full details

Example:

User: "Show me aircraft with hex 45211e"
Tool: "šŸ” Found 1 aircraft: āœˆļø Callsign: RYR123 ..."

aircraft_by_callsign(callsign: str = "")

Purpose: Search for aircraft by flight callsign

Input: Comma-separated callsigns (e.g., "BA387,AA123")

Returns: Aircraft matching the callsign

Example:

User: "Find flight BA387"
Tool: "šŸ” Found 1 aircraft: āœˆļø Callsign: BA387 ..."

aircraft_by_registration(reg: str = "")

Purpose: Search for aircraft by tail number/registration

Input: Comma-separated registrations (e.g., "N123AB,G-EUPA")

Returns: Aircraft matching the registration

Example:

User: "Show aircraft with tail N123AB"
Tool: "šŸ” Found 1 aircraft: šŸ“‹ Registration: N123AB ..."

aircraft_by_type(icao_type: str = "")

Purpose: Search for aircraft by ICAO type code

Input: Type codes (A321, B738, C172, E190, etc.)

Returns: All aircraft of that type currently flying

Example:

User: "Show all Boeing 737s"
Tool: "šŸ” Found 247 aircraft of type B738: ..."

aircraft_by_squawk(squawk_code: str = "")

Purpose: Search for aircraft by squawk code

Input: 4-digit squawk code (e.g., "7500", "7600", "7700")

Returns: Aircraft squawking that code

Note: 7700 = Emergency, 7600 = Communications failure, 7500 = Hijacking

Example:

User: "Find aircraft squawking 7700"
Tool: "šŸ” Found aircraft in emergency: ..."

aircraft_near_position(latitude: str = "", longitude: str = "", radius: str = "250")

Purpose: Find all aircraft within a radius of coordinates

Input:

  • latitude (decimal degrees, -90 to 90)
  • longitude (decimal degrees, -180 to 180)
  • radius (nautical miles, max 250)

Returns: All aircraft within the radius

Example:

User: "Show aircraft within 50 nm of Madrid (40.4168, -3.7038)"
Tool: "šŸ“ Found 23 aircraft within 50 nm of 40.4168, -3.7038: ..."

military_aircraft()

Purpose: List all military aircraft

Input: None

Returns: All aircraft tagged as military

Example:

User: "What military aircraft are flying?"
Tool: "šŸŽ–ļø Found 12 military aircraft: ..."

ladd_aircraft()

Purpose: List law enforcement and security aircraft

Input: None

Returns: All LADD (Law Enforcement/Security) aircraft

Example:

User: "Show law enforcement aircraft"
Tool: "🚁 Found 8 LADD aircraft: ..."

pia_aircraft()

Purpose: List interesting/special aircraft

Input: None

Returns: All PIA (special interest) aircraft

Example:

User: "Show special/private aircraft"
Tool: "šŸ›”ļø Found 156 PIA aircraft: ..."

Output Format

All tools return formatted strings with emoji indicators:

āœˆļø Callsign: BA387
šŸ“‹ Registration: G-EUPA
šŸ›©ļø Type: A350
šŸ“ Position: 51.4769, -0.4589
šŸ“ Altitude: 35000 ft
⚔ Ground Speed: 485 knots
🧭 Track: 089°
šŸ”– Mode S Hex: 406ee9
šŸ‘ļø Last Seen: 3 seconds ago

This provides:

  • Visual clarity with emojis
  • Easy scanning of information
  • Consistent formatting
  • Professional appearance

Adding New Tools

To add a new tool to this server:

Step 1: Create the Tool Function

@mcp.tool()
async def new_tool(param1: str = "", param2: str = "") -> str:
    """Single-line description of what this tool does."""
    if not param1.strip():
        return "āŒ Error: param1 is required"
    
    try:
        # Your implementation
        result = await make_api_request("/endpoint")
        formatted = format_aircraft_data(result.get('ac', []))
        return f"āœ… Success:\n\n{formatted}"
    except Exception as e:
        return f"āŒ Error: {str(e)}"

Step 2: Add to Catalog

Update the tools: section in custom.yaml:

tools:
  - name: new_tool

Step 3: Rebuild Docker Image

docker build -t airplane-mcp-server .

Step 4: Restart Claude Desktop

The new tool will automatically appear.

Testing

Unit Test Pattern

import asyncio

async def test_aircraft_by_callsign():
    result = await aircraft_by_callsign("BA387")
    assert "āœˆļø" in result
    assert "Found" in result
    print(result)

# Run with: asyncio.run(test_aircraft_by_callsign())

Integration Test

# Start server
python airplane_server.py

# In another terminal, test via stdin:
echo '{"jsonrpc":"2.0","method":"tools/list","id":1}' | python airplane_server.py

Performance Considerations

API Response Times

  • Typical: 500ms - 1s
  • Complex queries: 1s - 2s
  • Timeout: 15 seconds

Data Limits

  • Max 1000 aircraft per query (API limit)
  • Radius search: max 250 nautical miles
  • Callsign/registration: comma-separated up to 8000 chars

Optimization Tips

  1. Use specific searches - Narrow searches are faster
  2. Avoid hammering the API - Reasonable request frequency
  3. Cache results locally - Consider storing recent queries
  4. Monitor timeouts - API may be slow during peak traffic

Troubleshooting Guide

Problem: Tools Don't Appear

Solution:

  1. Verify image built: docker images | grep airplane
  2. Check catalog: cat ~/.docker/mcp/catalogs/custom.yaml
  3. Verify registry: cat ~/.docker/mcp/registry.yaml
  4. Restart Claude: Quit completely, then reopen

Problem: "No Aircraft Found"

Causes:

  • Wrong coordinates (verify lat/lon format)
  • Radius too small
  • No traffic in that area
  • Wrong type code (try uppercase)

Solution: Try a broader search or different parameters

Problem: API Timeout

Cause: API is slow or rate-limited

Solution:

  • Wait 30 seconds
  • Try a simpler query
  • Check internet connection

Problem: Docker Permission Denied

Solution:

# Add user to docker group
sudo usermod -aG docker $USER
# Log out and back in
newgrp docker

šŸ—ŗļø Future Enhancements

āš ļø Important Note: This planned dashboard is intended as an educational complement to the excellent official airplanes.live globe viewer, not a replacement. The goal is to demonstrate web development integration with MCP servers for learning purposes.

  • Caching System - Redis cache to reduce API calls
  • Rate Limiting - Smart request throttling
  • Export Features - Save results as JSON/CSV/KML
  • Enhanced Formatting - Better data visualization in Claude
  • Flight Alerts - Notify when specific aircraft appear
  • Historical Tracking - Store and track aircraft movements
  • Statistics Dashboard - Aggregate data and analytics
  • API Extensions - Additional airplanes.live endpoints

šŸ¤– AI-Powered Features

  • 🧠 Flight Prediction - ML-based flight path estimation
  • šŸ“ˆ Pattern Analysis - Identify unusual flight patterns
  • 🚨 Anomaly Detection - Automated alerts for interesting events
  • šŸ“Š Trend Analysis - Historical data insights

Security

Current Approach

  • No authentication required (public API data)
  • Consider applying for an API key for production use
  • No sensitive credentials stored
  • Runs as non-root user
  • Input validation on all parameters

Future Considerations

  • Add rate limiting if needed
  • Implement query logging for monitoring
  • Consider caching to reduce API calls
  • Add input sanitization for custom endpoints

šŸ“š Resources

šŸ¤ Contributing

This is an open-source educational project! Contributions are welcome:

  • šŸ› Bug Reports - Open an issue
  • šŸ’” Feature Requests - Suggest improvements
  • šŸ”§ Pull Requests - Submit code changes
  • šŸ“– Documentation - Improve guides and examples

šŸ“„ License & Disclaimer

MIT License - Feel free to use, modify, and distribute for educational purposes.

āš–ļø Legal Notice:

  • This software is provided "AS IS" without warranty
  • Author assumes no responsibility for usage or compliance
  • Users must respect airplanes.live API terms
  • Educational and non-commercial use only
  • Not affiliated with airplanes.live

šŸŽÆ Project Intent:

This project is a community contribution for educational purposes, demonstrating MCP server development and API integration. The goal is to help developers learn and contribute to the MCP ecosystem, not for commercial gain.


Made with ā¤ļø for the MCP community āœˆļø

Remember: Always respect API terms and use responsibly!

Related Servers