VFX MCP
A powerful video editing server using ffmpeg-python to process external video files.
vfx-mcp π¬
A powerful video editing MCP (Model Context Protocol) server built with FastMCP and ffmpeg-python. This server allows LLMs to perform video editing operations through a standardized interface, enabling AI-powered video manipulation and processing workflows.
Features
Core Video Operations
- Trimming & Cutting: Extract specific segments from videos
- Concatenation: Join multiple videos together
- Format Conversion: Transcode between different video formats
- Resolution & Quality: Resize, change bitrate, adjust quality
- Audio Processing: Extract, replace, or mix audio tracks
- Effects & Filters: Apply ffmpeg filters and effects
- Analysis: Get video metadata, generate thumbnails
- Advanced Operations: Speed changes, reverse playback, loops
MCP Capabilities
- Tools: Execute video editing operations
- Resources: Access and manage video files
- Context: Progress reporting for long operations
- Streaming: Support for both file-based and streaming workflows
Installation
From PyPI (Recommended) π
# Install directly from PyPI
pip install vfx-mcp
# Run the server
vfx-mcp
Using uv (Development)
# Clone the repository
git clone https://github.com/conneroisu/vfx-mcp.git
cd vfx-mcp
# Install dependencies with uv
uv sync
# Run the server
uv run python main.py
Using Nix
# Enter the development shell
nix develop
# Run the server
python main.py
System Requirements
- Python 3.13+
- FFmpeg (installed automatically with Nix, or install manually)
- uv package manager (for non-Nix installation)
Quick Start
Basic Usage
# Connect to the VFX MCP server
from fastmcp import Client
async with Client("python main.py") as client:
# Trim a video
result = await client.call_tool("trim_video", {
"input_path": "input.mp4",
"output_path": "trimmed.mp4",
"start_time": 10.0,
"duration": 30.0
})
# Get video information
info = await client.call_tool("get_video_info", {
"video_path": "input.mp4"
})
print(info)
CLI Usage with Claude Desktop
Add to your Claude Desktop configuration:
{
"mcpServers": {
"vfx": {
"command": "vfx-mcp",
"args": []
}
}
}
Or if using the development version:
{
"mcpServers": {
"vfx": {
"command": "uv",
"args": ["run", "python", "/path/to/vfx-mcp/main.py"],
"cwd": "/path/to/vfx-mcp"
}
}
}
API Reference
Video Processing Tools
trim_video
Extract a segment from a video.
Parameters:
input_path(str): Path to input video fileoutput_path(str): Path for output video filestart_time(float): Start time in secondsduration(float, optional): Duration in seconds (if not specified, trims to end)
concatenate_videos
Join multiple videos together.
Parameters:
input_paths(list[str]): List of video file paths to concatenateoutput_path(str): Path for output video filetransition(str, optional): Transition type between videos
convert_format
Convert video to different format or codec.
Parameters:
input_path(str): Path to input video fileoutput_path(str): Path for output video fileformat(str, optional): Output format (mp4, avi, mov, webm, etc.)codec(str, optional): Video codec (h264, h265, vp9, etc.)audio_codec(str, optional): Audio codec (aac, mp3, opus, etc.)
resize_video
Change video resolution.
Parameters:
input_path(str): Path to input video fileoutput_path(str): Path for output video filewidth(int, optional): Target width (maintains aspect ratio if height not specified)height(int, optional): Target height (maintains aspect ratio if width not specified)scale(float, optional): Scale factor (e.g., 0.5 for half size)
extract_audio
Extract audio track from video.
Parameters:
input_path(str): Path to input video fileoutput_path(str): Path for output audio fileformat(str, optional): Audio format (mp3, wav, aac, etc.)
add_audio
Add or replace audio track in video.
Parameters:
video_path(str): Path to input video fileaudio_path(str): Path to audio fileoutput_path(str): Path for output video filereplace(bool, optional): Replace existing audio (default: true)
apply_filter
Apply ffmpeg filter to video.
Parameters:
input_path(str): Path to input video fileoutput_path(str): Path for output video filefilter(str): FFmpeg filter string (e.g., "blur=10", "hflip", "reverse")
change_speed
Adjust video playback speed.
Parameters:
input_path(str): Path to input video fileoutput_path(str): Path for output video filespeed(float): Speed multiplier (e.g., 2.0 for double speed, 0.5 for half speed)
generate_thumbnail
Extract frame as image thumbnail.
Parameters:
video_path(str): Path to input video fileoutput_path(str): Path for output image filetimestamp(float, optional): Time in seconds (default: middle of video)
get_video_info
Get detailed video metadata.
Parameters:
video_path(str): Path to video file
Returns:
- Video metadata including duration, resolution, codec, bitrate, fps, etc.
Resource Endpoints
videos://list
List available video files in the workspace.
videos://{filename}/metadata
Get metadata for a specific video file.
videos://workspace/info
Get workspace information and available storage.
Examples
Create a Video Montage
async with Client("python main.py") as client:
# 1. Trim clips from source videos
clips = []
for i, (video, start, duration) in enumerate([
("vacation.mp4", 30, 5),
("birthday.mp4", 120, 8),
("concert.mp4", 45, 6)
]):
clip_path = f"clip_{i}.mp4"
await client.call_tool("trim_video", {
"input_path": video,
"output_path": clip_path,
"start_time": start,
"duration": duration
})
clips.append(clip_path)
# 2. Concatenate clips
await client.call_tool("concatenate_videos", {
"input_paths": clips,
"output_path": "montage.mp4",
"transition": "fade"
})
# 3. Add background music
await client.call_tool("add_audio", {
"video_path": "montage.mp4",
"audio_path": "background_music.mp3",
"output_path": "final_montage.mp4"
})
Process Video for Web
async with Client("python main.py") as client:
# Convert to web-friendly format with optimized settings
await client.call_tool("convert_format", {
"input_path": "raw_video.mov",
"output_path": "web_video.mp4",
"format": "mp4",
"codec": "h264",
"audio_codec": "aac"
})
# Create multiple resolutions
for width in [1920, 1280, 854]:
await client.call_tool("resize_video", {
"input_path": "web_video.mp4",
"output_path": f"web_video_{width}.mp4",
"width": width
})
# Generate thumbnail
await client.call_tool("generate_thumbnail", {
"video_path": "web_video.mp4",
"output_path": "thumbnail.jpg"
})
Architecture
Project Structure
vfx-mcp/
βββ README.md # This file
βββ flake.nix # Nix development environment
βββ pyproject.toml # Python project configuration
βββ uv.lock # Locked dependencies
βββ main.py # MCP server entry point
βββ src/
β βββ __init__.py
β βββ server.py # FastMCP server configuration
β βββ tools/ # Video editing tool implementations
β β βββ __init__.py
β β βββ basic.py # Basic operations (trim, concat, etc.)
β β βββ transform.py # Transformations (resize, rotate, etc.)
β β βββ audio.py # Audio processing tools
β β βββ effects.py # Filters and effects
β βββ resources/ # MCP resource handlers
β β βββ videos.py # Video file management
β βββ utils/ # Utility functions
β βββ ffmpeg.py # FFmpeg wrapper utilities
β βββ progress.py # Progress reporting helpers
βββ examples/ # Example usage scripts
βββ montage.py # Create video montage
βββ web_process.py # Process for web
βββ batch_convert.py # Batch conversion
Key Components
- FastMCP Server: Central server handling MCP protocol communication
- Tool Modules: Organized by functionality (basic, transform, audio, effects)
- FFmpeg Integration: Using ffmpeg-python for robust video processing
- Progress Reporting: Real-time progress updates for long operations
- Error Handling: Comprehensive error handling for ffmpeg operations
Development
Setting Up Development Environment
With Nix (Recommended for consistent environment)
# Enter development shell with all dependencies
nix develop
# Run tests
pytest
# Run linting
ruff check .
# Format code
ruff format .
With uv
# Install development dependencies
uv sync --dev
# Run tests
uv run pytest
# Run linting
uv run ruff check .
# Format code
uv run ruff format .
Adding New Tools
- Create a new function in the appropriate module under
src/tools/ - Use the
@mcp.tooldecorator - Add proper type hints and docstring
- Implement error handling
Example:
@mcp.tool
async def rotate_video(
input_path: str,
output_path: str,
angle: int,
ctx: Context
) -> str:
"""Rotate video by specified angle (90, 180, 270 degrees)."""
if angle not in [90, 180, 270]:
raise ValueError("Angle must be 90, 180, or 270 degrees")
await ctx.info(f"Rotating video by {angle} degrees...")
# Implementation using ffmpeg-python
stream = ffmpeg.input(input_path)
stream = ffmpeg.filter(stream, 'rotate', angle=math.radians(angle))
stream = ffmpeg.output(stream, output_path)
await run_ffmpeg_with_progress(stream, ctx)
return f"Video rotated and saved to {output_path}"
Testing
Run the test suite:
# All tests
pytest
# Specific test file
pytest tests/test_basic_tools.py
# With coverage
pytest --cov=src
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-tool) - Make your changes and add tests
- Run linting and tests
- Commit your changes (
git commit -m 'Add amazing tool') - Push to the branch (
git push origin feature/amazing-tool) - Open a Pull Request
License
MIT License - see LICENSE file for details
Acknowledgments
- Built with FastMCP - The fast, Pythonic MCP framework
- Powered by ffmpeg-python - Python bindings for FFmpeg
- Uses Model Context Protocol - Standard for LLM integrations
Related Servers
mcp-dice
Rolls dice using standard notation (e.g., 1d20) and returns individual rolls and their sum.
QMT MCP Server
An MCP server that interfaces with the locally running MiniQMT trading system.
Armor Crypto MCP
MCP to interface with multiple blockchains, staking, DeFi, swap, bridging, wallet management, DCA, Limit Orders, Coin Lookup, Tracking and more.
Weather Service MCP Server
A Spring Boot-based weather service providing weather forecasts and alerts via MCP integration.
IzmirMCP
Access real-time public transit data for Δ°zmir, including vehicle positions, arrivals, and schedules from Δ°ZBAN and ESHOT.
Time
Get the current time and perform timezone conversions using IANA timezone names.
LacyLights
AI-powered theatrical lighting design for the LacyLights system.
Robust LongβTerm Memory
A persistent, humanβlike memory system for AI companions
MediaSage
Tracks movies, books, and TV shows to provide intelligent recommendations based on your preferences.
MCP-Airflow-API
MCP-Airflow-API is an MCP server that leverages the Model Context Protocol (MCP) to transform Apache Airflow REST API operations into natural language tools. This project hides the complexity of API structures and enables intuitive management of Airflow clusters through natural language commands.