pyATS
Interact with network devices using Cisco's pyATS and Genie libraries for model-driven automation.
pyATS MCP Server
This project implements a Model Context Protocol (MCP) Server that wraps Cisco pyATS and Genie functionality. It enables structured, model-driven interaction with network devices over STDIO using the JSON-RPC 2.0 protocol.
π¨ This server does not use HTTP or SSE. All communication is done via STDIN/STDOUT (standard input/output), making it ideal for secure, embedded, containerized, or LangGraph-based tool integrations.
π§ What It Does
Connects to Cisco IOS/NX-OS devices defined in a pyATS testbed
Supports safe execution of validated CLI commands (show, ping)
Allows controlled configuration changes
Returns structured (parsed) or raw output
Exposes a set of well-defined tools via tools/discover and tools/call
Operates entirely via STDIO for minimal surface area and maximum portability
π Usage
- Set your testbed path
export PYATS_TESTBED_PATH=/absolute/path/to/testbed.yaml
- Run the server
Continuous STDIO Mode (default)
python3 pyats_mcp_server.py
Launches a long-running process that reads JSON-RPC requests from stdin and writes responses to stdout.
One-Shot Mode
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/discover"}' | python3 pyats_mcp_server.py --oneshot
Processes a single JSON-RPC request and exits.
π¦ Docker Support
Build the container
docker build -t pyats-mcp-server .
Run the container (STDIO Mode)
docker run -i --rm \
-e PYATS_TESTBED_PATH=/app/testbed.yaml \
-v /your/testbed/folder:/app \
pyats-mcp-server
π§ Available MCP Tools
Tool Description
run_show_command Executes show commands safely with optional parsing
run_ping_command Executes ping tests and returns parsed or raw results
apply_configuration Applies safe configuration commands (multi-line supported)
learn_config Fetches running config (show run brief)
learn_logging Fetches system logs (show logging last 250)
All inputs are validated using Pydantic schemas for safety and consistency.
π€ LangGraph Integration
Add the MCP server as a tool node in your LangGraph pipeline like so:
("pyats-mcp", ["python3", "pyats_mcp_server.py", "--oneshot"], "tools/discover", "tools/call")
Name: pyats-mcp
Command: python3 pyats_mcp_server.py --oneshot
Discover Method: tools/discover
Call Method: tools/call
STDIO-based communication ensures tight integration with LangGraphβs tool invocation model without opening HTTP ports or exposing REST endpoints.
π Example Requests
Discover Tools
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/discover"
}
Run Show Command
{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "run_show_command",
"arguments": {
"device_name": "router1",
"command": "show ip interface brief"
}
}
}
π Security Features
Input validation using Pydantic
Blocks unsafe commands like erase, reload, write
Prevents pipe/redirect abuse (e.g., | include, >, copy, etc.)
Gracefully handles parsing fallbacks and errors
π Project Structure
.
βββ pyats_mcp_server.py # MCP server with JSON-RPC and pyATS integration
βββ Dockerfile # Docker container definition
βββ testbed.yaml # pyATS testbed (user-provided)
βββ README.md # This file
π₯ MCP Server Config Example (pyATS MCP via Docker)
To run the pyATS MCP Server as a container with STDIO integration, configure your mcpServers like this:
{
"mcpServers": {
"pyats": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"PYATS_TESTBED_PATH",
"-v",
"/absolute/path/to/testbed/folder:/app",
"pyats-mcp-server"
],
"env": {
"PYATS_TESTBED_PATH": "/app/testbed.yaml"
}
}
}
}
{
"servers": {
"pyats": {
"type": "stdio",
"command": "python3",
"args": [
"-u",
"/Users/johncapobianco/pyATS_MCP/pyats_mcp_server.py"
],
"env": {
"PYATS_TESTBED_PATH": "/Users/johncapobianco/pyATS_MCP/testbed.yaml"
}
}
}
π§Ύ Explanation: command: Uses Docker to launch the containerized pyATS MCP server
args:
-i: Keeps STDIN open for communication
--rm: Automatically removes the container after execution
-e: Injects the environment variable PYATS_TESTBED_PATH
-v: Mounts your local testbed directory into the container
pyats-mcp-server: Name of the Docker image
env:
Sets the path to the testbed file inside the container (/app/testbed.yaml)
βοΈ Author
John Capobianco
Product Marketing Evangelist, Selector AI
Author, Automate Your Network
Let me know if youβd like to add:
A sample LangGraph graph config
Companion client script
CI/CD integration (e.g., GitHub Actions)
Happy to help!
The testbed.yaml file works with the Cisco DevNet Cisco Modeling Labs (CML) Sandbox!
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
GoThreatScope
Go-based SBOM, vulnerability, and secret scanner with MCP support.
LaTeX PDF MCP Server
Converts LaTeX source code into professionally formatted PDF documents.
Deepseek Thinking & Claude 3.5 Sonnet
Combines DeepSeek's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter.
AgentOps MCP
An MCP server for AgentOps, providing observability and evaluation tools for AI agents.
Storybook MCP
Help agents automatically write and test stories for your UI components
Hashkey MCP Server
Provides onchain tools for AI applications to interact with the Hashkey Network.
Cloudflare MCP Server Example
An example of deploying a remote MCP server on Cloudflare Workers without authentication.
SonarCloud
Fetch SonarCloud issues related to pull requests.
Refine Prompt
Refines and structures prompts for large language models using the Anthropic API.
Panther
Interact with the Panther security platform to write detections, query logs with natural language, and manage alerts.