Chalee MCP RAG
A Retrieval-Augmented Generation (RAG) server for document processing, vector storage, and intelligent Q&A, powered by the Model Context Protocol.
Chalee MCP RAG 🤖
一个基于 Model Context Protocol (MCP) 的 **RAG(检索增强生成)**服务器,提供文档处理、向量存储和智能问答功能。
✨ 特性
- 🔧 标准化 MCP 协议:遵循 Anthropic MCP 标准,可与 Claude Desktop 等客户端集成
- 📚 智能文档处理:自动分块、向量化存储
- 🔍 语义检索:基于余弦相似度的相关文档检索
- 💬 智能问答:结合检索上下文的准确回答生成
- 🛡️ 安全可靠:内置错误处理和参数验证
- 🚀 生产就绪:完整的配置和部署支持
🚀 快速开始
1. 克隆仓库
git clone https://github.com/PrettyKing/chalee-mcp-rag.git
cd chalee-mcp-rag
2. 安装依赖
npm install
3. 配置环境变量
cp .env.example .env
# 编辑 .env 文件,设置你的 OpenAI API 密钥
4. 启动 MCP 服务器
npm run mcp-server
5. 运行客户端演示
# 在另一个终端
npm run mcp-client
🛠️ 可用工具
MCP RAG 服务器提供以下 6 个核心工具:
| 工具名称 | 描述 | 参数 |
|---|---|---|
initialize_rag | 初始化 RAG Agent | apiKey, config |
add_document | 添加文档到知识库 | content, metadata |
ask_question | 智能问答 | question |
search_documents | 文档相似性搜索 | query, maxResults |
get_knowledge_base_stats | 获取知识库统计 | - |
clear_knowledge_base | 清空知识库 | - |
📁 项目结构
chalee-mcp-rag/
├── rag-agent.js # RAG Agent 核心实现
├── mcp-rag-server.js # MCP 服务器
├── mcp-client.js # MCP 客户端示例
├── test.js # RAG Agent 测试
├── package.json # 项目配置
├── .env.example # 环境变量示例
└── README.md # 说明文档
🌐 与 Claude Desktop 集成
要在 Claude Desktop 中使用此 MCP 服务器,请在 Claude 配置文件中添加:
macOS
编辑 ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"chalee-rag-server": {
"command": "node",
"args": ["/path/to/your/chalee-mcp-rag/mcp-rag-server.js"],
"env": {
"OPENAI_API_KEY": "your_openai_api_key_here"
}
}
}
}
Windows
编辑 %APPDATA%\\Claude\\claude_desktop_config.json:
{
"mcpServers": {
"chalee-rag-server": {
"command": "node",
"args": ["C:\\path\\to\\your\\chalee-mcp-rag\\mcp-rag-server.js"],
"env": {
"OPENAI_API_KEY": "your_openai_api_key_here"
}
}
}
}
📖 使用示例
基本用法
const MCPRAGClient = require('./mcp-client');
async function example() {
const client = new MCPRAGClient();
// 连接服务器
await client.connect();
// 初始化 RAG
await client.initializeRAG('your-openai-api-key');
// 添加文档
await client.addDocument('这是一个示例文档...', {
category: '示例',
source: 'demo'
});
// 提问
const answer = await client.askQuestion('这个文档讲了什么?');
console.log(answer.answer);
// 断开连接
await client.disconnect();
}
高级配置
// 自定义 RAG 配置
await client.initializeRAG('your-api-key', {
chunkSize: 800, // 文档分块大小
chunkOverlap: 100, // 分块重叠大小
maxRetrievedDocs: 5 // 最大检索文档数
});
🔧 配置选项
环境变量
| 变量名 | 描述 | 默认值 |
|---|---|---|
OPENAI_API_KEY | OpenAI API 密钥 | 必需 |
CHUNK_SIZE | 文档分块大小 | 1000 |
CHUNK_OVERLAP | 分块重叠大小 | 200 |
MAX_RETRIEVED_DOCS | 最大检索文档数 | 3 |
MODEL_NAME | GPT 模型名称 | gpt-3.5-turbo |
EMBEDDING_MODEL | 嵌入模型名称 | text-embedding-ada-002 |
🧪 测试
# 运行 RAG Agent 测试
npm test
# 运行 MCP 客户端演示
npm run mcp-client
🚀 部署
Docker 部署
FROM node:16-alpine
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
EXPOSE 3000
CMD ["npm", "run", "mcp-server"]
进程管理
# 使用 PM2 管理进程
npm install -g pm2
pm2 start mcp-rag-server.js --name "mcp-rag-server"
pm2 monitor
🔍 故障排除
常见问题
-
连接失败
- 确保 Node.js 版本 >= 16
- 检查依赖是否正确安装
- 验证 API 密钥是否有效
-
工具调用失败
- 确保先调用
initialize_rag - 检查参数格式是否正确
- 查看服务器日志获取详细错误信息
- 确保先调用
-
性能问题
- 减少
chunkSize或maxRetrievedDocs - 优化文档大小和数量
- 考虑使用外部向量数据库
- 减少
调试模式
# 启用详细日志
DEBUG=mcp:* npm run mcp-server
🌟 扩展功能
支持更多文档格式
// PDF 支持
const pdfParse = require('pdf-parse');
async function loadPDF(filePath) {
const dataBuffer = fs.readFileSync(filePath);
const data = await pdfParse(dataBuffer);
return await agent.addDocument(data.text, { type: 'pdf', source: filePath });
}
持久化存储
// 使用 Pinecone 向量数据库
const { PineconeStore } = require('langchain/vectorstores/pinecone');
class PersistentRAGAgent extends RAGAgent {
async initializePinecone() {
this.vectorStore = await PineconeStore.fromExistingIndex(
new OpenAIEmbeddings(),
{ pineconeIndex: this.index }
);
}
}
📚 API 文档
initialize_rag
初始化 RAG Agent 实例。
interface InitializeRAGParams {
apiKey: string;
config?: {
chunkSize?: number;
chunkOverlap?: number;
maxRetrievedDocs?: number;
};
}
add_document
向知识库添加文档。
interface AddDocumentParams {
content: string;
metadata?: Record<string, any>;
}
ask_question
使用 RAG 技术回答问题。
interface AskQuestionParams {
question: string;
}
interface AskQuestionResponse {
question: string;
answer: string;
sources?: Array<{
content: string;
similarity: number;
metadata: Record<string, any>;
}>;
timestamp: string;
}
🤝 贡献
欢迎提交 Issue 和 Pull Request!
- Fork 项目
- 创建功能分支 (
git checkout -b feature/AmazingFeature) - 提交更改 (
git commit -m 'Add some AmazingFeature') - 推送到分支 (
git push origin feature/AmazingFeature) - 打开 Pull Request
📄 许可证
MIT License - 详见 LICENSE 文件
🙏 致谢
📞 支持
- 📧 Email: your-email@example.com
- 🐛 Issues: GitHub Issues
- 💬 Discussions: GitHub Discussions
⭐ 如果这个项目对你有帮助,请给它一个星标!
Related Servers
MCP Arduino Server
An MCP server for the Arduino CLI, offering tools to manage sketches, boards, libraries, and files.
MCP Server Executable
An executable server for running MCP services, featuring tool chaining, multi-service management, and plugin support.
Streamable HTTP Server Example
An example MCP server demonstrating streamable HTTP responses using Node.js.
Bitcoin & Lightning Network
Interact with the Bitcoin and Lightning Network to generate keys, validate addresses, decode transactions, and query the blockchain.
Multichain MCP Server
A toolkit for building and deploying AI agents with blockchain capabilities, featuring a Model Context Protocol (MCP) server.
MasterGo Magic MCP
A standalone MCP service that connects MasterGo design tools with AI models, enabling them to retrieve DSL data directly from design files.
Rust Docs Server
Fetches Rust crate documentation from docs.rs using the rustdoc JSON API.
Deliberate Reasoning Engine (DRE)
Transforms linear AI reasoning into structured, auditable thought graphs, enabling language models to externalize their reasoning process as a directed acyclic graph (DAG).
Laravel MCP Server
A Laravel package for building secure Model Context Protocol servers with real-time communication using SSE.
Code Assistant
A Rust-based CLI tool for code-related tasks, operating as an MCP server.