Deliberate Reasoning Engine (DRE)
Transforms linear AI reasoning into structured, auditable thought graphs, enabling language models to externalize their reasoning process as a directed acyclic graph (DAG).
Deliberate Reasoning Engine (DRE)
A Model Context Protocol (MCP) server that transforms linear AI reasoning into structured, auditable thought graphs. DRE enables Language Models to externalize their reasoning process as a directed acyclic graph (DAG) with semantic thought types, dependencies, and validation.
🌟 Features
- 🧠 Semantic Thought Types: Categorize thoughts as Objectives, Hypotheses, Assumptions, Questions, Evidence, Actions, Synthesis, and Critiques
- 🔗 Graph-Based Dependencies: Build a DAG of thoughts with explicit relationships and dependencies
- 🚨 Assumption Tracking: Monitor and invalidate assumptions with automatic cascade to dependent thoughts
- 📊 Hypothesis Scoring: Track supporting and contradicting evidence (coming soon)
- 💾 Session Persistence: Save and load reasoning sessions (coming soon)
- ✅ Graph Validation: Detect cycles, contradictions, and orphaned thoughts
- 🎯 Focused Reasoning: Keep LLMs on track with structured problem decomposition
📦 Installation
As an MCP Server
npm install -g deliberate-reasoning-engine
For Development
git clone https://github.com/haasonsaas/deliberate-reasoning-engine.git
cd deliberate-reasoning-engine
npm install
npm run build
🚀 Quick Start
Configure with Claude Desktop
Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"dre": {
"command": "npx",
"args": ["deliberate-reasoning-engine"]
}
}
}
Or use the local development version:
{
"mcpServers": {
"dre": {
"command": "node",
"args": ["/absolute/path/to/dre/dist/index.js"]
}
}
}
Restart Claude Desktop, and you'll see the DRE tools available in the 🔧 menu.
🛠️ Available Tools
log_thought
Log a structured thought with semantic type and dependencies.
Parameters:
thought(string, required): The content of the thoughtthought_type(enum, required): One of:objective: The overall goal of the reasoning taskhypothesis: A proposed explanation or solutionassumption: A belief taken as true for this reasoning linequestion: A point of uncertainty to resolvesub_problem: Decomposition of a larger problemevidence: Data from tools or prior knowledgeaction: A plan to use a toolsynthesis: A conclusion from previous thoughtscritique: Self-correction or flaw identification
dependencies(string[], optional): IDs of thoughts this depends onconfidence(number 0-1, optional): Confidence levelaction_request(object, optional): Tool and parameters to execute
get_thought_graph
Retrieve the current reasoning graph.
Parameters:
format(enum, optional):"full"or"summary"(default:"summary")
invalidate_assumption
Mark an assumption as invalid, cascading to all dependent thoughts.
Parameters:
thought_id(string, required): ID of the assumption to invalidatereason(string, required): Explanation for invalidation
📖 Example Usage
Here's how an LLM might use DRE to analyze a complex decision:
// 1. Set the objective
const objective = await use_mcp_tool("dre", "log_thought", {
thought: "Should we acquire Company X?",
thought_type: "objective"
});
// 2. Form hypotheses
const hyp1 = await use_mcp_tool("dre", "log_thought", {
thought: "Acquiring Company X will increase our market share by 20%",
thought_type: "hypothesis",
dependencies: [objective.thought_id],
confidence: 0.7
});
// 3. Identify assumptions
const assumption = await use_mcp_tool("dre", "log_thought", {
thought: "Company X's technology is compatible with our stack",
thought_type: "assumption",
dependencies: [hyp1.thought_id],
confidence: 0.8
});
// 4. Break down into sub-problems
const subproblem = await use_mcp_tool("dre", "log_thought", {
thought: "Verify technical compatibility through due diligence",
thought_type: "sub_problem",
dependencies: [assumption.thought_id]
});
// 5. If assumption proves false, invalidate it
await use_mcp_tool("dre", "invalidate_assumption", {
thought_id: assumption.thought_id,
reason: "Technical audit revealed major incompatibilities"
});
// This automatically marks the sub-problem and any dependent thoughts as stale
🏗️ Architecture
DRE models reasoning as a directed acyclic graph where:
- Nodes are thoughts with semantic types
- Edges represent dependencies between thoughts
- Status tracking (active/stale) enables dynamic reasoning updates
- Cascade invalidation ensures reasoning consistency
🤝 Use Cases
- Strategic Decision Making: Break down complex business decisions
- Research Planning: Structure research questions and hypotheses
- Problem Solving: Decompose problems into manageable sub-problems
- Risk Analysis: Track assumptions and their implications
- Debugging: Systematic root cause analysis
- Learning: Structured exploration of new topics
🔧 Development
# Install dependencies
npm install
# Build TypeScript
npm run build
# Run in development mode
npm run dev
# Run tests
npm test
📝 Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
🐛 Troubleshooting
Common Issues
-
"Server not found" in Claude Desktop
- Ensure the path in your config is absolute
- Restart Claude Desktop after config changes
-
"Cannot find module" errors
- Run
npm installandnpm run build - Check that you're using Node.js 18+
- Run
📄 License
MIT - see LICENSE for details.
🙏 Acknowledgments
- Built on the Model Context Protocol
- Inspired by structured reasoning systems and cognitive architectures
- Thanks to Anthropic for Claude and the MCP specification
🚦 Roadmap
- Hypothesis scoring based on evidence
- Session persistence and resumption
- Graph visualization export
- Conflict detection between branches
- Integration with external reasoning tools
- Multi-agent reasoning support
📊 Stats
Related Servers
Scout Monitoring MCP
sponsorPut performance and error data directly in the hands of your AI assistant.
Alpha Vantage MCP Server
sponsorAccess financial market data: realtime & historical stock, ETF, options, forex, crypto, commodities, fundamentals, technical indicators, & more
Local Code Indexing for Cursor
A Python-based server that locally indexes codebases using ChromaDB to provide semantic search for tools like Cursor.
Remote MCP Server (Authless)
An example of a remote MCP server without authentication, deployable on Cloudflare Workers.
Trustwise
Advanced evaluation tools for AI safety, alignment, and performance using the Trustwise API.
Stack AI
Build and deploy AI applications using the Stack AI platform.
Chronos Protocol
A robust MCP server that eliminates temporal blindness in AI coding agents through intelligent time tracking, persistent memory, and complete session traceability.
MCP Code Crosscheck
A server for bias-resistant AI code review using cross-model evaluation.
MCP Jenkins
Enables secure, contextual AI interactions with Jenkins tools via the Model Context Protocol.
PsiAnimator-MCP
A server for quantum physics simulation and animation, using QuTip for computations and Manim for visualizations.
MCP Framework
A TypeScript framework for building Model Context Protocol (MCP) servers.
CodeAlive MCP
Provides semantic code search and codebase interaction features via the CodeAlive API.