Zero-Vector MCP
A high-performance vector database server for AI persona memory management.
Zero-Vector MCP: AI Persona Memory & Vector Database System
A complete AI persona memory management system combining a high-performance vector database server with a Model Context Protocol (MCP) interface for seamless integration with AI development tools like Cline.
š GitHub Repository: https://github.com/MushroomFleet/zero-vector-MCP
šÆ Overview
Zero-Vector MCP provides a production-ready solution for AI persona management and vector similarity search, featuring:
- High-Performance Vector Database - Sub-50ms query times with 349k+ vector capacity
- AI Persona Memory Management - Context-aware memory storage with semantic search
- MCP Integration - Seamless integration with AI tools through Model Context Protocol
- Production-Ready Architecture - Comprehensive security, monitoring, and scalability features
šļø System Architecture
graph TB
subgraph "AI Development Environment"
A[Cline AI Assistant] --> B[MCP Client]
end
subgraph "Zero-Vector MCP System"
B --> C[MCP Server]
C --> D[Zero-Vector API]
D --> E[Vector Database]
D --> F[SQLite Metadata]
subgraph "Core Services"
G[Persona Manager]
H[Memory Service]
I[Embedding Service]
end
D --> G
D --> H
D --> I
end
subgraph "External Services"
J[OpenAI Embeddings]
K[Local Transformers]
end
I --> J
I --> K
style A fill:#e1f5fe
style C fill:#f3e5f5
style E fill:#e8f5e8
style G fill:#fff3e0
style H fill:#fff3e0
style I fill:#fff3e0
š Quick Start
Prerequisites
- Node.js 18.0.0 or higher
- 2GB+ available RAM (recommended)
- Git
Installation
# Clone the repository
git clone https://github.com/MushroomFleet/zero-vector-MCP.git
cd zero-vector-MCP
# 1. Set up the Zero-Vector server
cd zero-vector/server
npm install
npm run setup:database
npm run generate:api-key # Generate API key for MCP
cp env.example .env # Add your Open AI API key
npm start
# 2. Set up the MCP server (in a new terminal)
cd MCP
npm install
cp env.example .env
# Edit .env with your Zero-Vector server URL and API key
npm start
Quick Test
# Test the vector database
curl http://localhost:3000/health
# Test MCP server connection
cd MCP
npm run test:connection
š Component Documentation
This system consists of two main components, each with detailed documentation:
šļø Zero-Vector Server
Location: zero-vector/README.md
The core vector database server providing:
- High-performance vector storage and similarity search
- RESTful API for vector operations
- SQLite metadata persistence
- Authentication and security middleware
- Real-time monitoring and health checks
š MCP Server
Location: MCP/README.md
The Model Context Protocol interface providing:
- 13 specialized tools for persona and memory management
- Seamless integration with AI development tools
- Comprehensive error handling and validation
- Structured logging and performance monitoring
⨠Key Features
Vector Database Performance
- Memory Efficiency: 2GB optimized storage supporting 349,525+ vectors
- High-Speed Search: Sub-50ms query times with cosine similarity
- Scalable Architecture: Three-tier design with comprehensive monitoring
- Multiple Metrics: Cosine, Euclidean, and dot product similarity
AI Persona Management
- Persona Creation: Configurable AI personas with custom behavior settings
- Memory Storage: Context-aware memory with importance scoring
- Semantic Search: Find relevant memories using vector similarity
- Conversation History: Complete conversation tracking and retrieval
- Memory Cleanup: Automated cleanup of old or low-importance memories
MCP Integration Tools
- Persona Tools:
create_persona
,list_personas
,get_persona
,update_persona
,delete_persona
- Memory Tools:
add_memory
,search_persona_memories
,add_conversation
,get_conversation_history
,cleanup_persona_memories
- Utility Tools:
get_system_health
,get_persona_stats
,test_connection
Security & Production Features
- API Key Authentication: Secure key generation with role-based permissions
- Rate Limiting: Multi-tier rate limiting (global, per-key, per-endpoint)
- Input Validation: Comprehensive request validation and sanitization
- Structured Logging: Winston-based logging with performance metrics
- Health Monitoring: Multiple health check endpoints for different monitoring needs
š® Use Cases
AI Assistant Memory
// Create a persona for an AI assistant
const persona = await mcpClient.createPersona({
name: "Technical Assistant",
description: "Helpful coding assistant with memory",
systemPrompt: "You are a helpful technical assistant...",
maxMemorySize: 1000
});
// Add important information to memory
await mcpClient.addMemory({
personaId: persona.id,
content: "User prefers TypeScript over JavaScript",
type: "preference",
importance: 0.8
});
// Search for relevant memories during conversation
const relevantMemories = await mcpClient.searchPersonaMemories({
personaId: persona.id,
query: "coding preferences",
limit: 5
});
Vector Similarity Search
// Direct vector operations through the API
const response = await fetch('http://localhost:3000/api/vectors/search', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-API-Key': 'your-api-key'
},
body: JSON.stringify({
query: [0.1, 0.2, 0.3, /* ... 1536 dimensions */],
limit: 10,
threshold: 0.7
})
});
Integration with Cline
{
"mcpServers": {
"zero-vector": {
"command": "node",
"args": ["C:/path/to/zero-vector-MCP/MCP/src/index.js"],
"env": {
"ZERO_VECTOR_BASE_URL": "http://localhost:3000",
"ZERO_VECTOR_API_KEY": "your_api_key_here"
}
}
}
}
š ļø Development
Project Structure
zero-vector-MCP/
āāā zero-vector/ # Vector database server
ā āāā server/ # Node.js backend
ā ā āāā src/ # Source code
ā ā āāā scripts/ # Setup scripts
ā ā āāā data/ # Database files
ā ā āāā README.md # Server documentation
ā āāā README.md # Server overview
āāā MCP/ # Model Context Protocol server
ā āāā src/ # MCP server source
ā ā āāā tools/ # MCP tool implementations
ā ā āāā utils/ # Utilities
ā āāā .env.example # Environment template
ā āāā README.md # MCP documentation
āāā DOCS/ # Internal documentation
āāā README.md # This file
Development Setup
# Start Zero-Vector server in development mode
cd zero-vector/server
npm run dev
# Start MCP server in development mode (new terminal)
cd MCP
npm run dev
# Run tests
npm test
Environment Configuration
Zero-Vector Server:
NODE_ENV=development
PORT=3000
MAX_MEMORY_MB=2048
DEFAULT_DIMENSIONS=1536
LOG_LEVEL=info
MCP Server:
ZERO_VECTOR_BASE_URL=http://localhost:3000
ZERO_VECTOR_API_KEY=your_api_key_here
MCP_SERVER_NAME=zero-vector-mcp
LOG_LEVEL=info
š Performance Characteristics
- Vector Storage: ~6MB per 1000 vectors (1536 dimensions)
- Search Performance: <50ms for 10,000+ vector corpus
- Memory Efficiency: 99.9% utilization of allocated buffer space
- Throughput: 1000+ vectors/second insertion rate
- Capacity: 349,525 vectors in 2GB configuration
š Security Features
- Authentication: API key-based authentication with secure generation
- Authorization: Role-based access control with granular permissions
- Rate Limiting: Multiple rate limiting layers (global, per-key, per-endpoint)
- Input Validation: Comprehensive request validation and sanitization
- Security Headers: Helmet.js implementation with CSP policies
- Audit Logging: Complete audit trail for all operations
š¤ Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Make your changes
- Add tests for new functionality
- Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
Development Guidelines
- Follow existing code style and patterns
- Add comprehensive tests for new features
- Update documentation for any API changes
- Ensure all tests pass before submitting PR
- Include performance considerations for vector operations
š License
This project is licensed under the MIT License - see the LICENSE file for details.
š Support
Documentation
- Vector Database: See
zero-vector/README.md
for detailed server documentation - MCP Server: See
MCP/README.md
for MCP setup and tool documentation
Troubleshooting
Connection Issues:
# Check Zero-Vector server health
curl http://localhost:3000/health
# Test MCP server connection
cd MCP && npm run test:connection
Common Issues:
- Ensure Node.js 18+ is installed
- Verify API key configuration in MCP
.env
file - Check Zero-Vector server is running before starting MCP server
- Ensure sufficient memory allocation (2GB+ recommended)
Getting Help
- GitHub Issues: Report bugs and feature requests
- Discussions: Ask questions and share ideas
- Wiki: Additional documentation and examples
Zero-Vector MCP - Production-ready AI persona memory management with high-performance vector search
Related Servers
Hive MCP Server
Enables AI assistants to interact with the Hive blockchain through the Model Context Protocol.
NocoDB
Manage NocoDB server, support read and write databases
Cryptocurrency Market Data
Provides real-time and historical cryptocurrency market data from major exchanges using the CCXT library.
MCP BigQuery Server
Securely access BigQuery datasets with intelligent caching, schema tracking, and query analytics via Supabase integration.
Dynamics 365 MCP Server by CData
A read-only MCP server by CData that enables LLMs to query live data from Dynamics 365. Requires the CData JDBC Driver for Dynamics 365.
Kusto MCP Server
Provides access to Azure Data Explorer (ADX) clusters, requiring Azure credentials for configuration.
CRM MCP Server
A production-ready MCP server for Customer Relationship Management (CRM) functionality, built with TypeScript and SQLite.
PyAirbyte
An AI-powered server that generates PyAirbyte pipeline code and instructions using OpenAI and connector documentation.
Supabase
Connects to Supabase platform for database, auth, edge functions and more.
AskTable
Interact with AskTable SaaS or local deployments to query data sources using natural language.