Snowflake
Snowflake database integration with read/write capabilities and insight tracking
Snowflake MCP Server
Overview
A Model Context Protocol (MCP) server implementation that provides database interaction with Snowflake. This server enables running SQL queries via tools and exposes data insights and schema context as resources.
Components
Resources
-
memo://insights
A continuously updated memo aggregating discovered data insights.
Updated automatically when new insights are appended via theappend_insighttool. -
context://table/{table_name}
(If prefetch enabled) Per-table schema summaries, including columns and comments, exposed as individual resources.
Tools
The server exposes the following tools:
Query Tools
-
read_query
ExecuteSELECTqueries to read data from the database.
Input:query(string): TheSELECTSQL query to execute
Returns: Query results as array of objects
-
write_query(enabled only with--allow-write)
ExecuteINSERT,UPDATE, orDELETEqueries.
Input:query(string): The SQL modification query
Returns: Number of affected rows or confirmation
-
create_table(enabled only with--allow-write)
Create new tables in the database.
Input:query(string):CREATE TABLESQL statement
Returns: Confirmation of table creation
Schema Tools
-
list_databases
List all databases in the Snowflake instance.
Returns: Array of database names -
list_schemas
List all schemas within a specific database.
Input:database(string): Name of the database
Returns: Array of schema names
-
list_tables
List all tables within a specific database and schema.
Input:database(string): Name of the databaseschema(string): Name of the schema
Returns: Array of table metadata
-
describe_table
View column information for a specific table.
Input:table_name(string): Fully qualified table name (database.schema.table)
Returns: Array of column definitions with names, types, nullability, defaults, and comments
Analysis Tools
append_insight
Add new data insights to the memo resource.
Input:insight(string): Data insight discovered from analysis
Returns: Confirmation of insight addition
Effect: Triggers update ofmemo://insightsresource
Usage with Claude Desktop
Installing via Smithery
To install Snowflake Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp_snowflake_server --client claude
Installing via UVX
"mcpServers": {
"snowflake_pip": {
"command": "uvx",
"args": [
"--python=3.12", // Optional: specify Python version <=3.12
"mcp_snowflake_server",
"--account", "your_account",
"--warehouse", "your_warehouse",
"--user", "your_user",
"--password", "your_password",
"--role", "your_role",
"--database", "your_database",
"--schema", "your_schema"
// Optionally: "--allow_write"
// Optionally: "--log_dir", "/absolute/path/to/logs"
// Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
// Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
]
}
}
Installing Locally
-
Install Claude AI Desktop App
-
Install
uv:
curl -LsSf https://astral.sh/uv/install.sh | sh
- Create a
.envfile with your Snowflake credentials:
SNOWFLAKE_USER="xxx@your_email.com"
SNOWFLAKE_ACCOUNT="xxx"
SNOWFLAKE_ROLE="xxx"
SNOWFLAKE_DATABASE="xxx"
SNOWFLAKE_SCHEMA="xxx"
SNOWFLAKE_WAREHOUSE="xxx"
SNOWFLAKE_PASSWORD="xxx"
# Alternatively, use external browser authentication:
# SNOWFLAKE_AUTHENTICATOR="externalbrowser"
-
[Optional] Modify
runtime_config.jsonto set exclusion patterns for databases, schemas, or tables. -
Test locally:
uv --directory /absolute/path/to/mcp_snowflake_server run mcp_snowflake_server
- Add the server to your
claude_desktop_config.json:
"mcpServers": {
"snowflake_local": {
"command": "/absolute/path/to/uv",
"args": [
"--python=3.12", // Optional
"--directory", "/absolute/path/to/mcp_snowflake_server",
"run", "mcp_snowflake_server"
// Optionally: "--allow_write"
// Optionally: "--log_dir", "/absolute/path/to/logs"
// Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
// Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
]
}
}
Notes
- By default, write operations are disabled. Enable them explicitly with
--allow-write. - The server supports filtering out specific databases, schemas, or tables via exclusion patterns.
- The server exposes additional per-table context resources if prefetching is enabled.
- The
append_insighttool updates thememo://insightsresource dynamically.
License
MIT
Related Servers
MySQL MCP Server
Enables secure interaction with MySQL databases, allowing AI assistants to list tables, read data, and execute SQL queries through a controlled interface.
CData Salesforce Data Cloud
A read-only MCP server for Salesforce Data Cloud, powered by CData.
UK Crime MCP
An MCP server for accessing UK police crime data, deployable on Cloudflare Workers.
MCP BigQuery Server
Securely access BigQuery datasets with intelligent caching, schema tracking, and query analytics via Supabase integration.
MySQL MCP Server
A read-only MySQL database server for LLMs to inspect schemas and execute queries.
MCP ODBC Server
Access ODBC-accessible data sources using a configured Data Source Name (DSN).
Open Formula 1 MCP Server
MCP Server to retrieve and analyze Formula 1 (F1) races, cars, drivers, lap, pit stops and more.
RewindDB
Interface with the Rewind.ai SQLite database to access audio transcripts and screen OCR data.
Databricks
Fetch enterprise data and automate developer actions on the Databricks platform.
Prometheus
Retrieve and analyze time-series data from Prometheus databases using PromQL queries.
